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Abstract. Generic architectures for specific domains can provide significant
gains in productivity and quality for real-time systems development. In order
to choose among different architectural features, a variety of qualitative
criteria have been proposed in the literature. However, real-time systems
require a more exact characterization based on quantitative evaluation of
some architectural features related to timing properties, such as scalability. In
this paper we explore a possible way of using Rate Monotonic Analysis to get
a measure of scalability between alternative architectures. The technique is
illustrated with a case study in a well-known real-time domain, data
acquisition systems. The results show clear differences in scalability for
different architectures, giving a clear indication of which one is better from
this point of view. We believe that the approach can be used on other
properties and domain architectures, thus opening new possibilities for
quantitative evaluation of software architectures.

1. Introduction

Recent advances in software engineering show that much can be gained from
developing generic software architectures for specific application domains that have
some “good” properties for a family of related applications in the domain [2,10,20].
In order to find out which architectural patterns suit better for a set of properties,
architecture evaluation methods are needed. Although qualitative methods may be
appropriate for a large variety of systems,  some properties require quantitative
measures for the alternative patterns to be properly compared so that the right
decision is made.

Real-time systems are special in that timing properties are part of the required
capabilities. Specific timing properties, such as response time or deadline
guarantees, are clearly dependent on particular system implementations. Timing
analysis methods, such as Rate Monotonic Analysis [13], can be used to analyze the
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time behavior of a wide class of real-time systems, and to help detailed design and
troubleshooting of these. However, if we look at more abstract properties, such as
scalability, which can be applied to a range of systems with a common architecture,
we find that there are no general methods applicable that can help a system architect
choose among different alternative architectural patterns based on their timing
properties.

In this paper we explore a possible way of dealing with this problem. We show
how Rate Monotonic Analysis can be combined with prototyping in order to get a
measure of scalability between alternative architectures. The technique is illustrated
with a case study in a well-known real-time domain, laboratory data acquisition
systems, which is mature enough for the implemented functionality and the software
architectures to be well known [12]. We compare two alternative architectures based
on language interface to hardware, because of the flexibility of this approach and the
possibility of controlling real-time behavior. The core of both architectures is quite
different because the design principles involved are also different. The first one was
obtained using the structured design paradigm for real-time systems [15], while the other
one is based on the object-oriented paradigm [18].

We developed instances of both architectures, and analyzed them using Rate
Monotonic Analysis. This allowed us to examine how their respective timing
properties scale up based on quantitative criteria that have not been considered
earlier2. The results show clear differences in scalability for both of the
architectures, which give a clear indication of which one is better from this point of
view.

In the next section we describe the general approach to scalability analysis that
we propose. Section 3 describes the functionality of the domain of data acquisition
systems that we address, and the software architectures that we wish to evaluate.
Then in section 4 we show how scalability analysis is carried out, and the main
results of the analysis. We conclude by discussing the applicability of the method to
other domains and the work that remains to be done for this purpose.

2. General approach

2.1 Rate Monotonic Analysis

Rate Monotonic Analysis (RMA) is a mathematical approach that helps ensuring
that a real-time system meets its performance requirements. It does so through a
collection of quantitative methods and algorithms that let engineers understand,
analyze and predict the timing behavior of their designs, mainly in terms of their
response times [16]. The methods are based on preemptive priority scheduling
theory [3], which was originated by Liu and Layland in 1973 [14].
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Rate Monotonic Analysis is based on an event-response framework, and is carried
out through several phases.

1. Describe real-time situations that apply.
2. Measure the execution time of actions.
3. Build the Implementation Table.
4. Build the Techniques Table.
5. Analyze the situation to determine if timing requirements are met.

Readers interested in a full description of RMA should consult the SEI RMA
handbook [13].

In order to apply the method to the data acquisition systems that we have studied,
we proceeded by first identifying the events which drive the system behavior, and
the responses to them. The responses are decomposed into actions which use
different resources. We measure the worst case execution times of the actions by
means of a “dual loop” technique [6,17]. The measurements take into account the
run-time system overheads and the available clock resolution. From this
information, summarized in the so-called ‘Implementation table’, a set of analysis
techniques can be applied which give information on the timing properties of the
system.

2.2 Scalability analysis

Scalability is a measure of how the performance of a system varies when its size
increases. The approach we have used to analyze scalability in different software
architectures is based on RMA. What we do is to parameterize the size of a system
by means of some quantifiable measure and then obtain estimates of some
characteristic real-time properties for different system sizes. In our case, we have
used the number of sensors being processed by a data acquisition system as a
measure of its size, and deadline missing and response times as the real-time
properties that are analyzed. An architecture is more scalable than other if it admits
a larger number of sensors to be processed without missing any deadlines. The
following sections describe the particular details and results of this approach for two
alternative architectures for laboratory data acquisition.

3. Architectures for data acquisition systems

3.1 Data acquisition systems

In this paper we compare two different software architectures for laboratory data
acquisition systems built on a simple platform, based on an Intel 486 /MSDOS
configuration, with I/O boards directly connected to the computer bus (figure 1).
The implementation language is Ada 83 [1].

Data acquisition is related to the reception of data from instruments or sensors.
Since data from sensors are analog, I/O boards are used to sample and convert them
to digital values. We decided to use software polling, as it implies the lowest level
of custom programming, thus increasing the reusability of software.
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Fig. 1. System description.

Signal ID Sensor state Period (ms) Next_Time_to_Read

T 308 Activated 1000 14 : 05 : 30.600

P204 Activated 500 14 : 05 : 30.100

F203 Deactivated 500 13 : 00 : 30.300

. . . . . . . . . . . .

Fig. 2. Sampling Plan

Conversion to engineering units is typically required before analog data are used
by the operator, by other software, or displayed in an alarm message. The software
architectures that we analyze perform this conversion in real-time after each data
sample is acquired.

Range checking is performed with each data sample before converting it to
engineering units. Alarm checking is supported by the comparison of the
engineering value of each sample with the alarm limits defined and stored in the
system database.

Converted data is stored in disk to permit the engineer or scientist the analysis of
data or the processing of them using more sophisticated algorithms not available for
real-time processing. During the sample data processing the operator can actuate
concurrently, sending commands to the system to activate or deactivate a sensor,
change the gain or modify the range or alarm limits.

The core of a data acquisition system is a sampling plan which contains
information related to the interval of time for recording the value of each signal.
Since the interval of time is usually fixed for each signal, the period of each signal
sampling is considered constant. Figure 2 shows an example of a sampling plan
containing information about the sensor state, sampling period and time of the next
measurement for each signal which is being read.

The sampling plan is not always implemented as a single entity. The software
architecture based on the principles of structured design contains a unique sampling
plan managed by a control transform that sends reading orders to the drivers
connected to the I/O boards. Another approach which is typical of object oriented
design, distributes the sampling plan in a collection of objects representing the
problem domain and frequently known as sensor objects. The resulting architectures
are different and will be described in detail in the next subsection.
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Fig. 3. Centralized software architecture.

3.2 Centralized architecture

The first architecture is based on structured design principles. The sampling plan is
managed by a central component that handles the concurrent series of readings for
all the sensors and schedules each reading at the appropriate instant. A special-
purpose scheduling algorithm is used rather than the native task scheduling of the
Ada runtime system, and thus scheduling is handled explicitly by the application.

The architecture is shown on Figure 3. Its components perform the basic
functions of the data acquisition system: I/O handling, raw data processing, sensor



management, operator interface, and data base management. There is also a central
sampling plan manager. Buffers, transporters, and relays, are used as coordination
mechanisms between concurrent activities, implementing synchronization and
message passing capabilities [7,9]. Priority assignments are based on the Rate
Monotonic Scheduling method [14]. The access protocol for shared resources is the
Highest Locker (HL) Protocol [13].

3.3 Distributed architecture

This architecture is based on the object oriented paradigm, so sensors are
implemented as independent entities and the implementation of the sampling plan is
also distributed.

The architecture is shown on figure 4. As before, its  main components are
directly related to the data acquisition functions. The sensor objects include all the
functions related to data acquisition, including scheduling, for each of the input data
signals.
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Fig. 4. Distributed software architecture.



 The differences between this architecture and the centralized software architecture
can be summarized as follows:

• The sampling plan does not exist as a unique entity.
• Periodic readings are managed by a set periodic tasks, each one

implementing the corresponding sensor sampling interval.
• The role of each sensor task is to send reading orders, then to receive the

raw data from the I/O_Driver and add a time tag to each sample. In the
centralized solution, some of these capabilities, are implemented in the
I/O_Driver, making it more complex.

4. Analysis of the architectures

4.1 Main event sequences

The starting point for Rate Monotonic Analysis is identifying the event sequences
that act as stimuli for the system, and the responses to them, in terms of actions and
used resources [5]. For the sake of brevity we will show only the main sequences
related to both software architectures. The sequences having the hardest timing
requirements are identified below.  Readers interested in the complete description of
sequences can consult the technical report describing the analysis results [8]. The
event sequences are summarized in tables 1 and 2.

4.2 Rate monotonic analysis of the architectures

The analysis follows the steps described in section 2. It produces the following
outputs:

Situation Table
We started building the situation tables by adding action and resource parameters to
the above tables. The purpose of this form of the table is to capture the timing
requirements.

Implementation Table
We derived the implementation table of the architectures using the action execution
times that we obtained by the measurement method described in section 2, as well
as other numeric parameters.

Techniques Table
The techniques table is a simplification of the implementation table. Its goal is to
have a set of parameters that still describes the architecture but restricts assumptions
to conditions where proven mathematical reasoning can be brought to bear. In this
tables all the arrival patterns are approximated as periodic arrivals with hard
deadlines.

 The generation of the techniques table for the centralized architecture was
specially difficult, and we consider it is one of the main contributions of this work.

 There are several events, the reading orders, with a bursty arrival pattern, i.e.
they can arrive arbitrarily on an interval defined by the sampling plan period.



Table 1. Event sequences in the Centralized Software Architecture

 Event Name  Type  Arrival Pattern  Time Req.

 Sensor_Reading.  Timed  Periodic, Ts  Hard, [Ts]

 Timer_Assign.  Internal  Bursty [N,V]  Hard,[Ds]

 RD_Processing  Timed  Periodic, Tp  Hard [Tp]

 EU_Data_Storage  Timed  Periodic,Tt  Hard, [Tt]

 Ch_Sensor_Gain  External  Bounded [L]  Soft [D]

 Ch_Sensor_State  External  Bounded [L]  Soft [D]

 Ch_Limits  External  Bounded [L]  Soft [D]

 DB_Consult  External  Bounded [L]  Soft [D]

 Erroneous_Comm.  External  Bounded [L]  Soft [D]

Table 2. Event sequences in the distributed software architecture

 Event Name  Type  Arrival Pattern  Time Req.

 Sensor_Reading_1-8  Timed  Periodic,T1-T8  Hard [T1-T8]

 RD_Processing  Timed  Periodic,Tp  Hard [Tp]

 EU_Data_Storage  Timed  Periodic,Tt  Hard [Tt]

 Ch_Sensor_Gain  External  Bounded [L]  Soft [D]

 Ch_Sensor_State  External  Bounded [L]  Soft [D]

 Ch_Limits  External  Bounded [L]  Soft [D]

 DB_Consult  External   Bounded [L]  Soft [D]

 Erroneous_Comm  External   Bounded [L]  Soft [D]

 The worst-case response time for an aperiodic event occurs just after the polling
task has checked for the event arrival when all reading orders arrive at the same
time. In this case, the last event has to wait for the preceding events to be processed.
The first event would have to wait one polling period for its processing to begin.  To
model this situation we propose a scheme , where the timer tasks are considered as
polling tasks which process sensor reading orders and send them to the I/O Driver.
For the purpose of the analysis, we represent this part of the system as completely
periodic, and therefore we can analyze it as if were a collection of periodic tasks. It
is important to emphasize the presence of blocking due to the time interval spent by
each timer task until it sends a sensor reading order to the I/O Driver. We estimated
the blocking time considering the worst case, which is reading all the sensors in 500
ms (the sampling plan period).

 The generation of the techniques table for the architecture with the distributed
sampling plan is easier than the previous one, as the sensor reading tasks are
periodic and there are no blocking delays.



Situation Analysis
The next step is applying analysis techniques to the event sequences using the
information of the techniques table. In our case, all event responses can be modeled
as periodic tasks with varying priorities, which can be analyzed using a well known
technique [11,13]. The result of this analysis is the worst case response time for each
event.

4.3 Results of the analysis

The main purpose of our analysis was to determine quantitatively what software
design features contribute to the limitations in the performance of the real-time
laboratory automation system, comparing the behavior of both design solutions. For
this purpose, we start analyzing the response times for a system with 8 sensors with
different frequencies, and then we scale up both software architectures by
incrementing the number of sensors in groups of 8, until some of the sequences fail
to meet the timing requirements.

 It is important to emphasize that the timing requirements of both architectures
are apparently different. In the distributed software architecture, each sensor is
managed separately, implemented by a different component with an execution
thread with a period and deadline determined by the sensor sampling requirements.
The resulting behavior is typically periodic. The situation is quite different in the
centralized software architecture, where all sensors are managed in the same way
despite their sampling requirements . There is one object implementing the sampling
plan, the SP Manager, containing a task that generates reading orders for all sensors.
Due to the fact that different sensor readings are not distinguished and can occur
during a very short time interval, the sequence behavior is considered bursty.

Dealing with different sensor reading requirements
Bursty arrival patterns are characterized by an event density. An event density
consists of a bursty interval, the length of time over which the burst restriction
applies, and a burst size, the number of events which can occur during that time
interval. In the centralized software architecture, the burst interval is 500
milliseconds and the burst size 8, so the system is required to process 16 reading
orders per second in the worst case. A distributed software architecture with
identical sensor sampling periods as the centralized solution only requires 8 readings
per second in the average. The above considerations determine the main differences
in the results obtained.

 For 8 sensors, the CPU total utilization is 15.41% for the centralized software
architecture versus 7.86% for the distributed software architecture. This is due to the
fact that the average readings of the centralized architecture for identical sensor
sampling requirements duplicate the average readings of the distributed software
architecture. With this number of sensors, there are no missed deadlines in either
architecture.

 When scaling up the centralized architecture, the first sequence to miss its
deadline is EU_Data Storage, when the number of 48 sensors is reached.



 

0

50000

100000

150000

200000

250000

300000

350000

8 16 24 32 40 48

Number of Sensors

Time

Fig. 5. Behavior of the Timer_Assignment sequence (Centralized Software Architecture)

 

0

50000

100000

150000

200000

250000

8 16 24 32 40 48 56 64 72 80 88

Number of Sensors

Time

Fig. 6. Behavior of the Sensor_Readings sequence (Distributed Software Architecture)

 For the distributed architecture, the first sequence missing its deadline is also
EU_Data Storage, but this happens only when we arrive at a number of 88 sensors.
The results are pessimistic for the centralized software architecture due to the bursty
nature of its arrival patterns. In the analysis we are considering the worst-case when
all the signals are acquired during a 500 milliseconds time interval.

 Response
time

 Period

 Response time for a
low priority sensor

 Response time for a
high priority sensor



Architectures Behavior

It is also interesting to describe the behavior of the sequences related to sensor
readings in both architectures. Figure 5 shows the timing behavior of the Timer
Assignment sequence for the centralized software architecture. The response time
has an optimum value when 24 sensors are processed (122746 microseconds). There
are two reasons to explain this behavior. When the number of sensors is lower than
24, the response time is influenced by the idle time of the timer task. When the
number of sensors is greater than 24 we have to consider the increase in the
processing requirements of the Raw_Data_Processor task (see figure 3).

 Figure 6 shows the timing behavior of the sensor reading sequences for the
distributed software architecture. We distinguish between sensors with high
sampling frequency and low sampling frequency. The response time increases as the
number of sensors increases. For high sampling frequency (high priority) sensors the
behavior is almost linear. In contrast, the response time for low priority sensors
increases abruptly as the number of sensors grow. Thus the distributed software
architecture handles sensors differently with respect to their sampling time
requirements, as opposed to the centralized architecture, in which all the sensors are
handled in the same way in spite of their sampling time requirements.

5. Conclusions

Performance engineering using RMA allows quantitative comparison of alternative
architectures, giving illustrative results about system behavior and scalability
properties that cannot discovered by testing.

 RMA is best suited to periodic arrival patterns, but in this study we had to deal
with a bursty arrival pattern, that of the internal events generated by the
SP_Manager task. We found a solution considering the timer tasks as polling tasks
processing the internal events generated by the SP_Manager task and queued by the
Service_Pool task. This modeling solution allowed us to apply seamlessly RMA.

 Diverse causes of inaccuracy can be identified in the analysis techniques (Bailey
1995):

• Execution times are always assumed to be at the maximum.
• Sporadic inter-arrival intervals are always assumed to be the minimum.
• Compiler optimization has been prohibited to allow the calculation of

execution times.
• Overheads associated to the Ada runtime system are simplified.

These inaccuracies imply pessimistic results in the evaluation of the
architectures. Therefore, we think that the method is more suitable to compare
diverse solutions as we did, than to analyze single designs at the architectural level
of description, since the inaccuracies impact evenly in the evaluation  of the diverse
architectures.
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