Segmentación en imagen de frutos de granado usando deep learning con aplicación en agricultura de precisión

  1. Jaime Giménez Gallego 1
  2. Juan Domingo González Teruel 1
  3. Ana Toledo Moreo 1
  4. Manuel Jiménez Buendía 1
  5. Fulgencio Soto Vallés 1
  6. Roque Torres Sánchez 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Book:
XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja)
  1. Carlos Balaguer Bernaldo de Quirós (ed. lit.)
  2. José Manuel Andújar Márquez (ed. lit.)
  3. Ramón Costa Castelló (ed. lit.)
  4. C. Ocampo-Martínez (coord.)
  5. Juan Jesús Fernández Lozano (ed. lit.)
  6. Matilde Santos Peñas (ed. lit.)
  7. José Simo (ed. lit.)
  8. Montserrat Gil Martínez (ed. lit.)
  9. José Luis Calvo Rolle (ed. lit.)
  10. Raúl Marín (ed. lit.)
  11. Eduardo Rocón de Lima (ed. lit.)
  12. Elisabet Estévez Estévez (ed. lit.)
  13. Pedro Jesús Cabrera Santana (ed. lit.)
  14. David Muñoz de la Peña Sequedo (ed. lit.)
  15. José Luis Guzmán Sánchez (ed. lit.)
  16. José Luis Pitarch Pérez (ed. lit.)
  17. Óscar Reinoso García (ed. lit.)
  18. Óscar Déniz Suárez (ed. lit.)
  19. Emilio Jiménez Macías (ed. lit.)
  20. Vanesa Loureiro-Vázquez (ed. lit.)

Publisher: Servizo de Publicacións ; Universidade da Coruña

Year of publication: 2022

Pages: 1001-1006

Congress: Jornadas de Automática (43. 2022. Logroño)

Type: Conference paper

Abstract

In precision agriculture, to automatically monitor the state of the crop using images, processing tools are needed to extract the information of interest. In this study, a Deep Learning model is developed for image segmentation to discriminate pomegranate fruits. Results of Intersection over Union (IoU)=0.71 and mean Average Precision (mAP)=0.82 are achieved. Subsequently, an algorithm for estimating the size of the fruit in pixels is presented, with an average relative error of 5.4%.