A Study Using the Network Simulation Method and Nondimensionalization of the Fiber Fuse Effect

  1. Sanchez-Pérez, Juan Francisco 2
  2. Solano-Ramírez, Joaquín 1
  3. Marín-García, Fulgencio 3
  4. Castro, Enrique 2
  1. 1 Department of Mechanical Engineering, Materials and Manufacturing, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
  2. 2 Department of Applied Physics and Naval Technology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
  3. 3 Department of Automation Engineering, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
Journal:
Axioms

ISSN: 2075-1680

Year of publication: 2024

Volume: 14

Issue: 1

Pages: 2

Type: Article

DOI: 10.3390/AXIOMS14010002 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Axioms

Abstract

This paper presents an innovative approach to modelling the fiber optic fusion effect using the Network Simulation Method (NSM). An analogy between the heat conduction equations and electrical circuits is developed, allowing a complex physical problem to be transformed into an equivalent electrical system. Using NGSpice, thermal interactions in an anisotropic optical fiber under high optical power conditions are simulated. The methodology addresses the distribution of the temperature in the system, considering thermal variations and temperature-dependent material characteristics. In an NSM equivalent circuit, the effect of applying the spark is modelled by a switch that switches the spark-generating source on and off. It can be seen that temperature variation with time, or temperature rise rate (K/s), depends on the applied power. In addition, the mathematical method of nondimensionalization is used to study the real influence of each parameter of the problem on the solution and the relationship between the variables. Four optical fiber cases are analysed, each characterised by different areas and refractive indices, revealing how these variables affect the propagation of the melting phenomenon. The results highlight the effectiveness of the NSM in solving nonlinear and coupled problems in thermal engineering, providing a solid framework for future research in the optimisation of optical communication systems.

Bibliographic References

  • Duarte, F.J. (1988). Self-propelled self-focusing damage in the optical fibres. Lasers 1987, Proceedings of the Tenth International Conference on Lasers and Applications, Lake Tahoe, NV, USA, 7–11 December 1987, STS Press.
  • Kashyap, (1988), Electron. Lett., 24, pp. 47, 10.1049/el:19880032
  • Kashyap, R., Sayles, A.H., and Cornwell, G.F. (1997). Heat-flow modeling and visualization of catastrophic self-propagating damage in single-mode optical fibers at low powers. Laser-Induced Damage in Optical Materials: 1996, SPIE.
  • Starikova, V.A., Konin, Y.A., Petukhova, A.Y., Aleshkina, S.S., Petrov, A.A., and Perminov, A.V. (2023). Mathematical Model of Fuse Effect Initiation in Fiber Core. Algorithms, 16.
  • Todoroki, S. (2014). Fiber Fuse, Springer.
  • Ha, (2011), Opt. Lett., 36, pp. 1536, 10.1364/OL.36.001536
  • Shuto, (2016), J. Photonics, 2016, pp. 2781392, 10.1155/2016/2781392
  • Xiao, Q., Tian, J., Yan, P., Li, D., and Gong, M. (2019). Exploring the initiation of fiber fuse. Sci. Rep., 9.
  • Konin, (2021), J. Opt. Technol., 88, pp. 672, 10.1364/JOT.88.000672
  • Shuto, (2022), J. Electr. Electron. Eng., 10, pp. 162
  • Lin, (2014), Opt. Express, 22, pp. 8962, 10.1364/OE.22.008962
  • Mizuno, Y., Lee, H., Hayashi, N., Nakamura, K., and Todoroki, S.-I. (2024, November 20). Plastic Optical Fiber Fuse and Its Impact on Sensing Applications. Available online: http://www.youtube.com/.
  • Marques, (2022), Adv. Photonics Res., 3, pp. 2100210, 10.1002/adpr.202100210
  • Xiao, (2020), IEEE Photonics Technol. Lett., 32, pp. 573, 10.1109/LPT.2020.2985585
  • Tian, (2022), Photonics Res., 10, pp. 2513, 10.1364/PRJ.465896
  • Tian, (2021), Chin. J. Lasers-Zhongguo Jiguang, 48, pp. 81
  • Peusner, L. (1987). The Principles of Network Thermodynamics: Theory and Biophysical Applications, Entropy Limited.
  • Nagel, L. (1973, January 12). SPICE (Simulation Program with Integrated Circuit Emphasis). Proceedings of the 16th Midwest Symposium on Circuit Theory, Waterloo, ON, Canada.
  • Nagel, L.W. (1975). SPICE2: A Computer Program to Simulate Semiconductor Circuits, College of Engineering, University of California.
  • Alhama, (2020), Commun. Nonlinear Sci. Numer. Simul., 84, pp. 105201, 10.1016/j.cnsns.2020.105201
  • Carslow, (1986), J. Eng. Mater. Technol., 108, pp. 378, 10.1115/1.3225900
  • Davis, D.D., Mettler, S.C., and DiGiovanni, D.J. (November, January 30). Experimental data on the fiber fuse. Proceedings of the 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, Boulder, CO, USA.
  • Hanafusa, (1985), J. Appl. Phys., 58, pp. 1356, 10.1063/1.336107
  • Shuto, (2004), IEEE J. Quantum Electron., 40, pp. 1113, 10.1109/JQE.2004.831635
  • Marcuse, (1977), Bell Syst. Tech. J., 56, pp. 703, 10.1002/j.1538-7305.1977.tb00534.x
  • Hao, (2018), Appl. Therm. Eng., 139, pp. 213, 10.1016/j.applthermaleng.2018.04.124
  • Kreith, F., and Bohn, M.S. (1986). Principles of Heat Transfer, Harper and Row Publishers Inc.
  • Alhama, (2002), J. Heat Transf., 124, pp. 988, 10.1115/1.1495520
  • Alhama, (2008), Comput. Appl. Eng. Educ., 16, pp. 72, 10.1002/cae.20159
  • Alhama, (2002), Heat Mass Transf., 38, pp. 327, 10.1007/s002310100254
  • Sánchez-Pérez, J.F., Marín, F., Morales, J.L., Cánovas, M., and Alhama, F. (2018). Modeling and simulation of different and representative engineering problems using Network Simulation Method. PLoS ONE, 13.
  • Solano, J., Balibrea, F., Moreno, J.A., and Marín, F. (2023). Dry Friction Analysis in Doped Surface by Network Simulation Method. Mathematics, 11.
  • Fernández-Gracía, M., Sánchez-Pérez, J.F., del Cerro, F., and Conesa, M. (2023). Mathematical Model to Calculate Heat Transfer in Cylindrical Vessels with Temperature-Dependent Materials. Axioms, 12.
  • Zheng, (2023), IEEE Trans. Smart Grid, 14, pp. 1907, 10.1109/TSG.2022.3210014
  • Holger, V., Atkinson, G., Nenzi, P., and Warning, D. (2024, November 20). Software “NgSpice”. Available online: https://ngspice.sourceforge.io/index.html.
  • Gear, (1971), Commun. ACM, 14, pp. 176, 10.1145/362566.362571
  • Solano, J., Mulas-Pérez, J., Balibrea, F., and Moreno-Nicolás, J.A. (2024). Truncation Error of the Network Simulation Method: Chaotic Dynamical Systems in Mechanical Engineering. Mathematics, 12.