On two high-order families of frozen Newton-type methods

  1. Amat, S. 1
  2. Argyros, I. 3
  3. Busquier, S. 1
  4. Hernández-Verón, M.A. 2
  1. 1 Universidad Politécnica de Cartagena

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

  2. 2 Universidad de La Rioja

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  3. 3 Cameron University

    Cameron University

    Lawton, Estados Unidos

    ROR https://ror.org/00rgv0036

Numerical Linear Algebra with Applications

ISSN: 1070-5325

Year of publication: 2018

Volume: 25

Issue: 1

Type: Article

DOI: 10.1002/NLA.2126 SCOPUS: 2-s2.0-85037627702 WoS: WOS:000417585300006 GOOGLE SCHOLAR

More publications in: Numerical Linear Algebra with Applications


This paper is devoted to the study of two high-order families of frozen Newton-type methods. The methods are free of bilinear operators, which constitute the main limitation of the classical high-order iterative schemes. Both families are natural generalizations of an efficient third-order method. Although the methods are more demanding, a semilocal convergence analysis is presented using weaker conditions. Copyright © 2017 John Wiley & Sons, Ltd.