A modified Chebyshev's iterative method with at least six order of convergence

  1. Amat, S. 1
  2. Hernández, M.A. 2
  3. Romero, N. 2
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Applied Mathematics and Computation

ISSN: 0096-3003

Año de publicación: 2008

Volumen: 206

Número: 1

Páginas: 164-174

Tipo: Artículo

DOI: 10.1016/J.AMC.2008.08.050 SCOPUS: 2-s2.0-55949118671 WoS: WOS:000260999200019 GOOGLE SCHOLAR

Otras publicaciones en: Applied Mathematics and Computation

Resumen

This paper is devoted to the construction and analysis of a high order variant of the classical Chebyshev method. The method has order of convergence at least six for simple roots. The extension to system of equations and its semilocal convergence for nonlinear equations are presented. Finally, an application to well-known algebraic Riccati equation is considered. © 2008 Elsevier Inc. All rights reserved.