Optimización del proceso de soldadura GMAW de uniones a tope de la aleación AA 6063-T5 basada en la metodología de superficie de respuesta y en la geometría del cordón de soldadura

  1. Miguel Eguía, Valentín
  2. Martínez Conesa, Eusebio José
  3. Segura Porta, Ferrán
  4. Manjabacas Tendero, María Carmen
  5. Abellán, E.
Journal:
Revista de metalurgia

ISSN: 0034-8570

Year of publication: 2012

Volume: 48

Issue: 5

Pages: 333-350

Type: Article

DOI: 10.3989/REVMETALM.1169 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de metalurgia

Abstract

The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found.

Bibliographic References

  • [1] B.K. Srivastava, S.P. Tewar y J. Prakash, Int. J. Engineer. Sci. Technol. 2 (2010) 1.425-1.432.
  • [2] AWS, Welding Handbook, Vol. 2. Welding Processes, 8th ed., 2001, pp. 47-65.
  • [3] A.M. Al-Mukhtar, H. Biermann, P. Hübner y S. Henkel, J. Mater. Eng. Perform. 19 (2010) 1.225-1.234. http://dx.doi.org/10.1007/s11665-009-9411-0
  • [4] G. Kumar y K.N. Prabhu, Adv. Colloid. Interfac. 133 (2007) 61-89. http://dx.doi.org/10.1016/j.cis.2007.04.009 PMid:17560842
  • [5] J.C. Mc Glone y D.B. Chadwick, Welding Institute Report 80 (1978) 256-263.
  • [6] E. Karadeniz, U. Ozsarac y C. Yildiz, Mater. Design. 28 (2007) 649-656. http://dx.doi.org/10.1016/j.matdes.2005.07.014
  • [7] M.A. Wahab y M.J. Painter, J. Pm. Ves. & Piping 73 (1997) 153-159. http://dx.doi.org/10.1016/S0308-0161(97)00049-5
  • [8] I.S. Kim, C.E. Park, Y.J. Jeong y J.S. Son, Int. J. Adv. Manuf. Techn. 18 (2001) 98-102. http://dx.doi.org/10.1007/s001700170080
  • [9] I.S. Kim, J.S. Son, I.G. Kim, J.Y. Kim y O.S. Kim, J. Mater. Process. Tech. 136 (2003) 139-145. http://dx.doi.org/10.1016/S0924-0136(02)01126-3
  • [10] P.E. Murray y A. Scotti, Sci. Technol. Weld. Joi. 4 (1999) 112-117. http://dx.doi.org/10.1179/136217199101537644
  • [11] M. Dorta, J. Vidal, A. Mateo, G. Fargas y F. Camejo, Dyna 78 (2011) 206-215.
  • [12] M.C. Payares, C. De Barros, P. Muñoz y Z. Cassier, Rev. Latinoamericana de Metalurgia y Materiales 17 (1997) 5-12.
  • [13] V. Aleo, M.K.S. Madugula y R. Balachandar, Canadian Journal of Civil Engineering Publisher 33 (2006) 151-160. http://dx.doi.org/10.1139/l05-099
  • [14] V. Miguel, A. Martínez, M.C Manjabacas, J. Coello y A. Calatayud, AIP Conference Proceedings,1, New York, USA, AMER INST. PHYSICS, 2009, pp. 170-179.
  • [15] D. Hoffman, K. Dable y D. Fisher, Welcome to welding, Ed. Pearson Education Limited), USA, 2010, pp. 69-75.
  • [16] M. Estrems, E.J. Martínez-Conesa y V. Miguel, Dyna 84 (2009) 251-258.