On the Periodic Solutions Emerging from the Equilibria of the Hill Lunar Problem with Oblateness
- de Bustos, M Teresa 1
- López, Miguel A 2
- Martínez, Raquel 2
- Vera, Juan A 3
-
1
Universidad de Salamanca
info
-
2
Universidad de Castilla-La Mancha
info
-
3
Universidad Politécnica de Cartagena
info
ISSN: 1575-5460
Datum der Publikation: 2018
Ausgabe: 17
Nummer: 2
Seiten: 331-344
Art: Artikel
Andere Publikationen in: Qualitative theory of dynamical systems
Zusammenfassung
In this paper, using the averaging theory of first order, we obtain sufficient conditions for computing periodic solutions in the 3D Hill problem with oblateness.
Informationen zur Finanzierung
Acknowledgements This work has been partially supported by MINECO Grant Number MTM2014-51891-P, Fundación Séneca de la Región de Murcia Grant Number 19219/PI/14 and FEDER OP2014-2020 of Castilla-La Mancha Grant Number GI20163581.Geldgeber
-
Universidad de Castilla-La Mancha
Spain
- GI20163581
-
Fundación para la Formación e Investigación Sanitarias de la Región de Murcia
Spain
- 19219/PI/14
-
Ministerio de Economía y Competitividad
Spain
- MTM2014-51891-P
Bibliographische Referenzen
- 1. Abouelmagd, E.I., Guirao, J.L.G.: On the perturbed restricted three-body problem. Appl. Math. Nonlinear Sci. 1(1), 123–144 (2016)
- 2. Buica, A., Francoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)
- 3. Buica, A., García, I.: Periodic solutions of some perturbed symmetric Euler top. Topol. Methods Nonlinear Anal. 36, 91–100 (2010)
- 4. de Bustos, M.T., Guirao, J.L.G., Vera, J.A., Vigo-Aguilar, J.: Periodic orbits and C1-integrability in the planar Stark–Zeeman problem. J. Math. Phys. 53, 082701 (2012)
- 5. de Bustos, M.T., Guirao, J.L.G., Vera, J.A.: The spatial Hill Lunar problem: periodic solutions emerging from equilibria. Dyn. Syst., 1–14. doi:10.1080/14689367.2016.1227771
- 6. Llibre, J., Rodrigues, A.: On the periodic orbits of Hamiltonian systems. J. Math. Phys. 51, 042704 (2010)
- 7. Malkin, I.G.: Some problems of the theory of nonlinear oscillations. In: Gosudarstv. Izdat. Tehn.–Teor. Lit., Moscow (1956) (Russian)
- 8. Markakis, M.P., Perdiou, A.E., Douskos, C.N.: The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families. Astrophys. Space Sci. 315, 297–306 (2008)
- 9. Markellos, V.V., Roy, A.E., Perdios, E.A., Douskos, C.N.: A Hill problem with oblate primaries and effect of oblateness on Hill stability of orbits. Astrophys. Space Sci. 278, 295–304 (2001)
- 10. Markellos, V.V., Roy, A.E., Velgakis, M.J., Kanavos, S.S.: A photogravitational Hill problem and radiation effects on Hill stability of orbits. Astrophys. Space Sci. 271, 293–301 (2000)
- 11. Papadakis, K.E.: The planar Hill problem with oblate primary. Astrophys. Space Sci. 293(3), 271–287 (2004)
- 12. Papadakis, K.E.: The planar photogravitational Hill problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 1809–1821 (2006)
- 13. Perdiou, A.E., Markellos, V.V., Douskos, C.N.: The Hill problem with oblate secondary: numerical exploration. Earth Moon Planets 97, 127–145 (2005)
- 14. Perdiou, A.E., Perdios, E.A., Kalantonis, V.S.: Periodic orbits of the Hill problem with radiation and oblateness. Astrophys. Space Sci. 342, 19–30 (2012)
- 15. Pérez-Chavela, E., Tamayo, C.: Relative equilibria in the 4-vortex problem bifurcating from an equilateral triangle configuration. Appl. Math. Nonlinear Sci. 1(1), 301–310 (2016)
- 16. Roseau, M.: Vibrations non linéaires et théorie de la stabilité. In: Springer Tracts in Natural Philosophy, vol. 8. Springer, Berlin, New York (1966) (French)