Diseño optimizado, modelado dinámico - cinemático y fabricación de un auv, integrando herramientas cae para su validación

  1. Aguirre Gómez, Fredy Alexander
Dirigida por:
  1. Josep Tornero Montserrat Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 23 de abril de 2020

Tribunal:
  1. Juan Antonio García Manrique Presidente/a
  2. Antonio Guerrero González Secretario
  3. Beatriz López Boada Vocal

Tipo: Tesis

Resumen

La robótica submarina ha sido uno de los campos de investigación que más interés ha despertado en las últimas décadas y con esto ha logrado una evolución de dicho campo. Avances de la robótica submarina han sido implementados en áreas diferentes a la investigación, dentro de los beneficiados está el sector comercial y el sector militar, así como la academia. Por otra parte, avances tecnológicos de diferentes áreas se incorporan a la robótica submarina, principalmente en los sistemas electrónicos los que más estimulan el desarrollo de todo lo relacionado con los vehículos submarinos, por lo tanto, se generan progresos en sistemas de control además del diseño mecánico y estructural. Esta tesis se centró en el diseño y construcción de un vehículo autónomo submarino para el proyecto DIVISAMOS. A partir del análisis del estado actual de la robótica submarina, el diseño planteado recoge todos los aspectos favorables de los vehículos existentes, de esta forma se tienen características que optimizan el vehículo, otorgándole versatilidad y eficiencia de funcionamiento. En el proceso investigativo se dirigieron esfuerzos, principalmente a la integración de métodos de diseño mecánico que optimizaron las características del vehículo que se construyó, presentando así un vehículo híbrido con desplazamientos eficientes y con posibilidad de desarrollar misiones que requieran hoovering. Cabe destacar que los métodos de diseño presentados en esta tesis, permiten incorporar sistemas de sensores para desarrollo de misiones de monitoreo, Localización y Mapeo Simultáneos (SLAM, por sus siglas en inglés) batimetría de ambientes submarinos con generación de datos georreferenciados, de alta resolución y su proyección cartográfica. Con todo esto se puede asegurar que se construyó un vehículo de altas prestaciones. Con el análisis de los resultados obtenidos con la implementación de Dinámica de Fluidos Computacional (CFD, por sus siglas en inglés), se logró que el vehículo tenga bajo consumo de energía ya que se han estudiado a fondo aspectos de la forma hidrodinámica del casco, del vehículo para reducir la fuerza de arrastre. Dentro de los resultados a desatacar en este aspecto se presenta un modelo que incorpora el cálculo en tiempo real, de las fuerzas debidas al arrastre generado por las corrientes de agua que interactúan con el casco del vehículo, reduciendo con esto el alto costo computacional de los análisis CFD y enriqueciendo el modelado dinámico. El modelo dinámico y cinemático de un vehículo autónomo submarino (AUV, por sus siglas en inglés), reviste un mayor grado de complejidad debido a que al sumergirse, depende de la navegación inercial que funciona basada en las mediciones de los instrumentos y los sistemas de referencia para determinar su posición. Las matrices de transformación son un método eficaz, usado para el modelado matemático de brazos robot, en esta tesis se plateó un modelo matemático hibrido, que utiliza matrices de transformación para plantear la cinemática del AUV, éste modelo tiene la particularidad de permitir agregar elementos al modelo inicial, continuando con la misma formulación resultando de gran utilidad para casos en los que el AUV realiza misiones en las que manipulan objetos y debido a esto se incorpora un brazo robot.