Estimación del nivel de estrés hídrico en frutales mediante técnicas machine learning para aplicación en sistemas de riego inteligentes
- Juan D. González-Teruel 1
- Victor Blanco 2
- Pedro José Blaya-Ros 1
- Rafael Domingo Miguel 1
- Fulgencio Soto Vallés 1
- R. Torres Sánchez 1
-
1
Universidad Politécnica de Cartagena
info
-
2
Washington State University
info
Publisher: Universitat Jaume I ; Servizo de Publicacións ; Universidade da Coruña ; Comité Español de Automática
ISBN: 978-84-9749-804-3
Year of publication: 2021
Pages: 477-484
Congress: Jornadas de Automática (42. 2021. Castellón)
Type: Conference paper
Abstract
Water is a limited resource in arid and semi-arid regions. This is the case of the Mediterranean area, where its demographic and climatic conditions make it particularly prone to farming, demanding a major percentage of water resources. Deficit irrigation strategies have proved to be successful, but it is essential to control crop water stress. The measurement of crop water stress is currently associated with midday stem water potential, which is very time-consuming. At an agricultural perspective, it would be interesting to define qualitative levels of crop water stress and to be able to estimate them from variables whose measurement can be automated, so that intelligent irrigation systems can be implemented based on the water needs of the crop. In this work we present a preliminary study to obtain a model capable of predicting five levels of crop water stress from time data of water potential and volumetric water content in the soil and different agro-climatic variables. Multiple Machine Learning algorithms have been evaluated, obtaining a maximum estimation accuracy of 72.4%.