Simulación del Flujo en una Turbina Kaplan mediante Dinámica de Fluidos ComputacionalDesarrollo de una Herramienta para Utilización Docente

  1. José L Vicéns
  2. Blas Zamora
  3. Antonio S Kaiser
Zeitschrift:
Formación Universitaria

ISSN: 0718-5006

Datum der Publikation: 2011

Ausgabe: 4

Nummer: 6

Seiten: 3-12

Art: Artikel

DOI: 10.4067/S0718-50062011000600002 DIALNET GOOGLE SCHOLAR

Andere Publikationen in: Formación Universitaria

Zusammenfassung

This paper presents a teaching-learning methodology for the course "Hydropower and Ocean Power" in the Master of Renewable Energy at the Polytechnic University of Cartagena (Spain). From the experience gained in two courses, a teaching approach according to the Bologna Declaration, to ensure that students acquire skills related to the ability of analyzing and designing hydraulic machines is proposed. In particular, The numerical simulation of the flow through a Kaplan turbine was chosen for study. The method includes the problem-based learning and the project-based learning approaches, as well as the concept of facilitator-tutor as a key element of the method. The commercial software Matlab is employed as a tool to translate the geometry to the meshing software Gambit; from where the mesh and the boundary conditions are translated to the Ansys-Fluent CFD code. The aim is to provide the students with relevant knowledge on hydraulic turbines through different numerical simulation projects.

Bibliographische Referenzen

  • Araujo, U.F, Sastre, G. (2008). El Aprendizaje Basado en Problemas. Editorial Gedisa. Barcelona.
  • Çengel, Y.A, Cimbala, J.M. (2006). Mecánica de Fluidos: Fundamentos y Aplicaciones. McGraw-Hill.
  • De Miguel, M, Alfaro, I.J, Apodaca, P, Arias, J. M, García, E, Lobato, C, Pérez, A. (2006). Metodologías de enseñanza y aprendizaje en el desarrollo de competencias: Orientaciones para el profesorado universitario ante el Espacio Europeo de Educación Superior. Alianza Editorial. Madrid.
  • García, J. (2008). El aprendizaje basado en problemas en la enseñanza universitaria. Servicio de Publicaciones de la Universidad de Murcia.
  • Klenowsky, V. (2005). Desarrollo del portafolios para el aprendizaje y la evaluación. Nancea S.A. de Ediciones. Madrid.
  • Navaz, H.K, Henderson, B.S, Berg, R.M, Nekcoei, S.M.A. (2002). A New Approach to Teaching Undergraduate Thermal/Fluid Sciences-Courses in Applied Computational Fluid Dynamics and Compressible Flow. The International Journal of Mechanical Engineering Education. 30. 35-49
  • Mills, J, Treagust, D. (2003). Engineering Education: Is Problem-Based or Project-Based Learning the Answer?. Australasian Journal of Engineering Education.
  • Real Decreto 1393/2007, por el que se establece la ordenación de las enseñanzas universitarias oficiales, BOE n° 270.
  • Prasad, V, Gahlot, Krishnamachar, P. (2009). CFD Approach for Design Optimization and Validation for Axial Flow Hydraulic Turbine. Indian J. Engineering & Materials Sciences. 13. 229236
  • Pujol, T, Montoro, L, Pelegrí, M, González, R. (2010). Learning Hydraulic Turbomachinery with Computacional Fluid Dynamics (CFD) Codes. Computers Applications in Engineering Education.
  • Radha Krishna, H.C. (1997). Hydraulic Design of Hydraulic Machinery. Avebury.
  • Stern, F. Development of Hands-On CFD Educational Interface for Undergraduate Engineering Courses and Laboratories. ASEE Annual Conference. Salt Lake City. 2004.
  • Stern, F. (2006). Hands-On CFD Educational Interface for Engineering Courses and Laboratories. Journal of Engineering Education. 95. 63-83
  • Tu, J, Yeoh, G.H, Liu, C. (2008). Computational Fluid Dynamics: A Practical Approach. Elsevier.
  • Wilcox, D.C. (2006). Turbulence Modeling for CFD. 3. DCW Industries.
  • Zamora, B, Kaiser, A.S. (2009). Enseñanza de temas avanzados de Mecánica de Fluidos usando Dinámica de Fluidos Computacional. Formación Universitaria. 2. 27-39
  • Zamora, B, Kaiser, A.S, Vicente, P.G. (2010). Improvement in Learning on Fluid Mechanics and Heat Transfer Courses Using Computational Fluid Dynamics. International Journal of Mechanical Engineering Education. 38. 147-166