Análisis temporal y frecuencial de presiones medidas en la solera de cuencos de aliviaderos de vertido libre

  1. Marco, F. 1
  2. Carrillo, J.M. 1
  3. Castillo, L.G. 1
  4. García, J.T. 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Ingeniería del agua

ISSN: 1134-2196

Ano de publicación: 2019

Volume: 23

Número: 4

Páxinas: 289-301

Tipo: Artigo

DOI: 10.4995/IA.2019.12255 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Ingeniería del agua

Obxectivos de Desenvolvemento Sustentable

Resumo

Free falling jet is one of the most common energy dissipation methods used in the overtopping of dams. This work presents the time and frequency analysis of pressure measurements obtained at the bottom of a plunge pool downstream of free falling jets in an experimental facility. A relative large device (falling height up to 2.85 m and impingement jet velocities between 5.3 and 7.6 m/s) has been used in the study. The behavior of the four types of free falling jets classified in previous studies has been analyzed in the time and the frequency domains. The study focuses on the pressure on the stagnation point. The pressure distributions near the stagnation point have been also analyzed. Finally, the results have been compared with the frequencies behavior for circular and rectangular jets available in the literature.

Referencias bibliográficas

  • Ballio, F., Franzetti, S., Tanda, M.G. 1992. Pressure fluctuations induced by turbulent circular jets impinging on a flat plate, Excerpta, 7.
  • Bollaert, E. 2002. Transient water pressures in joints and formation of rock scour due to high velocity jet impact. PhD Thesis, Laboratory of Hydraulic Constructions (LCH), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
  • Carrillo, J.M. 2014. Metodología numérica y experimental para el diseño de los cuencos de disipación en el sobrevertido de presas de fábrica. PhD Thesis. Departamento de Ingeniería Civil, Universidad Politécnica de Cartagena, España.
  • Castillo, L.G. 2007. Pressure characterization of undeveloped and developed jets in shallow and deep pool. 32nd Congress of IAHR, the International Association of Hydraulic Engineering & Research. Vol. 3, 1-10. Venice, Italy. Disponible en https://www.upct.es/hidrom/publicaciones/congresos/2007_Venice_Pressure_characterization_of_jets.pdf. Último acceso: octubre de 2019.
  • Castillo, L.G. 2006. Aerated jets and pressure fluctuations in plunge pools. The 7th Int. Conf. on Hydroscience and Engineering (ICHE-2006). Philadelphia, USA. Vol 7, 1-23. Disponible en https://www.upct.es/hidrom/publicaciones/monografias/Philadelphia_USA_AreatedJets_2006.pdf. Último acceso: octubre de 2019.
  • Castillo, L.G. 1989. Metodología experimental y numérica para la caracterización del campo de presiones en los disipadores de energía hidráulica. Aplicación al vertido libre en presas bóveda. PhD Thesis. Universidad Politécnica de Cataluña, España.
  • Castillo, L.G., Carrillo, J.M. 2016a. Pressures and Velocities Distributions in Plunge Pools. 2nd International Seminary of Dam Protection Against Over Topping. Ft. Collins, Colorado, USA, 7-9 September.
  • Castillo, L.G., Carrillo, J.M. 2016b. Scour, Velocities and Pressures Evaluations Produced by Spillway and Outlets of Dam. Water, 8(3), 68. https://doi.org/10.3390/w8030068
  • Castillo, L.G., Carrillo, J.M., Blázquez, A. 2015. Plunge pool mean dynamic pressures: a temporal analysis in nappe flow case. Journal of Hydraulic Research, 53(1), 101-118. https://doi.org/10.1080/00221686.2014.968226
  • Castillo, L.G., Marco, F., Carrillo, J.M. 2018. Advances in the characterization of pressures and velocities inthe overtopping arch and gravity dams. 3rd International Conference on Protection against Overtopping, Grange Over Sands, UK, 6-8 June.
  • Castillo, L.G., Puertas, J., Dolz, J. 1999. Discussion of "Pressure fluctuation on plunge pool floors". Journal of Hydraulic Research, 37(2), 272-288. https://doi.org/10.1080/00221689909498311
  • Castillo L.G., Puertas J., Dolz, J. 2007. Discussion about Scour of Rock due to the impact of plunging high velocity jets. Journal of Hydraulic Research, 45(6), 715-723. https://doi.org/10.1080/00221686.2007.9521823
  • Chassaing, P. 2000. Turbulence en mécanique des fluides. Analyse du phénoméne en vue de sa modélisation a l’usage de l’ingénieur. POLYTECH. Cépadues-Editions, Toulouse.
  • Davidson, P. A. 2004. Turbulence: An Introduction for Scientists and Engineers. Editorial Oxford University Press, ISBN-13:978-0198529491.
  • Duarte, R.X.M. 2014. Influence of Air Entrainment on Rock Scour Development and Block Stability in Plunge Pool. PhD Thesis, Laboratory of Hydraulic Constructions (LCH), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
  • Ervine, D.A., Falvey, H.R., Withers, W. 1997. Pressure fluctuations on plunge pool floors. Journal of Hydraulic Research, 35(2), 257-279. https://doi.org/10.1080/00221689709498430
  • Federspiel, M.P.E.A. 2011. Response of an embedded block impacted by high-velocity jets. PhD Thesis, Laboratory of Hydraulic Constructions (LCH), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
  • FEMA. 2004. Federal Guidelines for Dam Safety: Hazard Potential Classification System for Dams. Federal Emergency Management Agency. Octuber 1998. Reprinted January 2004. US Department of Homeland Security, USA.
  • FEMA. 2013. Selecting and Accommodating Inflow Design Floods for Dams. Federal Emergency Management Agency. FEMA P-94, August. US Department of Homeland Security, USA.
  • FEMA. 2014. Technical Manual: Overtopping Protection for Dams. Federal Emergency Management Agency. FEMA P-1014, May. US Department of Homeland Security, USA.
  • Kolmogorov, A.N. 1941. Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number. Doklady Akademiya Nauk SSSR, 30, 299-303.
  • Maleki, S., Fiorotto, V. 2019. Scour due to a Falling Plane Jet: A Comprehensive Approach. Journal of Hydraulic Engineering, 145(4). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001564
  • Manso, P.F.A.E. 2006. The influence of pool geometry and induced flow patterns in rock scour by high-velocity plunging jets. PhD Thesis, Laboratory of Hydraulic Constructions (LCH), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
  • Moore, W.L. (1946). Energy loss at the base of a free overall. Transaction, American Society of Civil Engineers, 108, 1343-1360.
  • Puertas, J. 1994. Criterios hidráulicos para el diseño de cuencos de disipación de energía en presas bóveda con vertido libre por coronación. PhD Thesis. Universidad Politécnica de Cataluña, España.
  • Puertas, J., Dolz, J. 2005. Plunge Pool Pressures Due to a Falling Rectangular Jet. Journal of Hydraulic Engineering, 131(5), 404-407. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(404)
  • Wahl, T.L., Frizell, K.H., Cohen, E.A. 2008. Computing the trajectory of free jets. Journal of Hydraulic Engineering, 134(2), 256–260. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(256)
  • Withers, W. 1991. Pressure Fluctuations in the Plunge Pool of an Impinging Jet Spillway. PhD Thesis, University of Glasgow, UK
  • Xu-Duo-Ming 1983. Pressao no fundo de um canal devido ao choque de um jacto plano, e suas caracteristicas de fluctuacao, Translation from chinese by J.A. Pinto de Campos, Lisboa.