Fractal Dimension for IFS-Attractors Revisited

  1. Fernández-Martínez, M 1
  2. Guirao, J L G 2
  3. Vera López, Juan Antonio 1
  1. 1 University Centre of Defence at the Spanish Air Force Academy
  2. 2 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Ano de publicación: 2018

Volume: 17

Número: 3

Páxinas: 709-722

Tipo: Artigo

DOI: 10.1007/S12346-018-0272-5 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Qualitative theory of dynamical systems

Resumo

One of the milestones in Fractal Geometry is the so-called Moran’s Theorem, which allows the calculation of the similarity dimension of any strict self-similar set under the open set condition. In this paper, we contribute a generalized version of the Moran’s theorem, which does not require the OSC to be satisfied by the similitudes that give rise to the corresponding attractor. To deal with, two generalized versions for the classical fractal dimensions, namely, the box and the Hausdorff dimensions, are explored in terms of fractal structures, a kind of uniform spaces.

Información de financiamento

Financiadores

Referencias bibliográficas

  • 1. Arenas, F.G., Sánchez-Granero, M.A.: A characterization of self-similar symbolic spaces. Mediterr. J. Math. 9(4), 709–728 (2012)
  • 2. Bandt, C., Hung, N.V., Rao, H.: On the open set condition for self-similar fractals. Proc. Am. Math. Soc. 134(5), 1369–1374 (2005)
  • 3. Bandt, C., Retta, T.: Topological spaces admitting a unique fractal structure. Fundam. Math. 141(3), 257–268 (1992)
  • 4. Deng, QiRong, Harding, John, TianYou, Hu: Hausdorff dimension of self-similar sets with overlaps. Sci. China Ser. A Math. 52(1), 119–128 (2009)
  • 5. Falconer, K.: Fractal Geometry.Mathematical Foundations and Applications, 1st edn.Wiley, Chichester (1990)
  • 6. Fernández-Martínez, M.: A survey on fractal dimension for fractal structures. Appl. Math. Nonlinear Sci. 1(2), 437–472 (2016)
  • 7. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures: a Hausdorff approach. Topol. Appl. 159(7), 1825–1837 (2012)
  • 8. Fernández-Martínez,M., Sánchez-Granero,M.A.: Fractal dimension for fractal structures. Topol. Appl. 163, 93–111 (2014)
  • 9. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures: a Hausdorff approach revisited. J. Math. Anal. Appl. 409(1), 321–330 (2014)
  • 10. Fernández-Martínez, M., Sánchez-Granero, M.A.: How to calculate the Hausdorff dimension using fractal structures. Appl. Math. Comput. 264, 116–131 (2015)
  • 11. Fernández-Martínez,M., Sánchez-Granero,M.A., Segovia, J.E. Trinidad: Fractal dimensions for fractal structures and their applications to financial markets, Aracne Editrice, S.r.l., Roma (2013)
  • 12. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)
  • 13. Lalley, S.P.: The packing and covering functions of some self-similar fractals. Indiana Univ. Math. J. 37(3), 699–710 (1988)
  • 14. Moran, P.A.P.: Additive functions of intervals and Hausdorff measure. Math. Proc. Camb. Philos. Soc. 42(1), 15–23 (1946)
  • 15. Ngai, S.-M., Wang, Yang: Hausdorff dimension of self-similar sets with overlaps. J. Lond. Math. Soc. 63(3), 655–672 (2001)
  • 16. Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122(1), 111–115 (1994)
  • 17. Schief, A.: Self-similar sets in complete metric spaces. Proc. Am. Math. Soc. 124(2), 481–490 (1996)