Interacción de los estudiantes con las actividades de Moodleun estudio basado en Web Mining

  1. Juan Pedro Muñoz Gea 1
  2. Francisco Javier Pérez de la Cruz 2
  3. Sonia Busquier Sáez 1
  4. María Magdalena Silva Pérez 1
  5. Carlos Angosto Hernández 1
  1. 1 Universidad Politécnica de Cartagena

    Universidad Politécnica de Cartagena

    Cartagena, España


  2. 2 Universidad Politécnica de Cartagnea
TECHNO REVIEW: International Technology, Science and Society Review / Revista Internacional de Tecnología, Ciencia y Sociedad

ISSN: 2695-9933

Year of publication: 2016

Volume: 5

Issue: 1

Pages: 19-28

Type: Article

DOI: 10.37467/GKA-REVTECHNO.V5.453 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: TECHNO REVIEW: International Technology, Science and Society Review / Revista Internacional de Tecnología, Ciencia y Sociedad


The purpose of this article is to analyze the learning data set obtained from the Moodle platform andtrack student activity as an essential requirement for this new teaching-learning interactive in implementing the European Higher Educa-tion  Area  (EHEA)  has  been  a  substantial  changes  in  the  assessment  process.  The  various  web  mining  subjects  used  as  a methodology  to  extract  information  using  variables  that  provide  information  about  how  students  interact  with  different activities  configured  in  the  virtual  platform  Moodle  and  monitoring  that  make  the  subject  taking  into  temporary  variables account.  This  is  evidenced  by  the  results  that  systems  for  managing  learning,  Learning  Management  System  (LMS)  in  the form  of  virtual  learning  platforms  store  large  amounts  of  information  that  can  be  drawn  from  the  various  subjects  under interactuaciones with the virtual platform Moodle. We conclude that there is a relationship between interactions with Moodle and academic performance, and the use of students and teachers from the platform.

Bibliographic References

  • Agudo-Peregrina, A. F., Iglesias-Pradas, S., Conde-González, M. A., Hernández-García, A. (2013). Can we predict success from log data in VLEs? Classification of interactions for leaning analyticis and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behaviour, accepted to be published.
  • Baker, R., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future revisions. Journal of Educational Data Mining, 1(1), pp. 3-17.
  • Balgojevic, M., & Micic, Z. (2013). A web-based intelligent report e-learning system using data mining techniques. Computers and Electrical Engineering, 39, pp. 465-474.
  • Donnelly, R. (2010). Interaction analysis in a ‘Learning by Doing’problem-based professional development context. Computers & Education, 55(3), pp. 1357-1366.
  • Ferguson, R. (2012).The state of learning analytics in 2012: A review and future challenges. Technical report KMI-12-01. UK: Knowledge Media Institute, The Open University. Google Analytics,,
  • Mostow, J., & Beck, J. (2006). Some useful tactics to modify, map and mine data from intelligent tutors. Natural Language Engineering, 12(02), pp. 195-208.
  • Philips, R., Maor, D., Preston, G., & Cumming-Potvin, W. (2012). Exploring learning analytics as indicators of study behavior. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA), pp. 2861-2867.
  • Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), pp. 135-146.
  • Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computer & Education, 51(6), pp. 368-384.
  • Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), pp. 601-618.
  • Sims, R. (1999). Interactivity on stage: Strategies for learner-designer communication. Australian Journal of Educational Technology, 15(3), pp. 257-272.