Modelling and analysis methodology of si ic engines turbocharged by VGT

  1. Gómez Vilanova, Alejandro
Supervised by:
  1. José Ramón Serrano Cruz Director

Defence university: Universitat Politècnica de València

Fecha de defensa: 25 February 2022

Committee:
  1. José Galindo Lucas Chair
  2. Francisco Vera García Secretary
  3. Fabio Bozza Committee member

Type: Thesis

Abstract

The new generation of spark ignition (SI) engines is expected to represent most of the future market share in the context of power-train with or without hybridization. Nevertheless, the current technology has still critical challenges in front to meet incoming CO2 and pollutant emissions standards. Consequently, new technologies are emerging to improve engine efficiency and meet new pollutant regulations. Among others, one of the most followed trends is engine size reduction, known as downsizing, based on the turbocharging technique. New turbocharger technologies, such as variable geometry turbines (VGT), are evaluated for their application under the demanding operating conditions of SI engines. In this work, from experimental data obtained in an engine test cell, a 1-D complete engine model calibration methodology was conducted: a theoretical analysis aimed at ensuring full control on any aspect of the simulation. In other words, the 1-D engine model was fully fitted with respect to the experimental engine data. Furthermore, it is evidenced the requirement of post-processing and validating the experimental data dealing with turbocharger maps, since phenomena such as heat transfer and friction losses are required to be decoupled from the so-called experimental turbocharger maps. Accordingly, a methodology for turbocharger maps obtention is presented, based on an experimental campaign divided into several test typologies and followed by the modelling stage. The modelling stage is carried out making usage of already developed integral turbocharger models available in the literature. Additionally, the improvement in the accuracy of the simulations when post-processed turbocharger maps are compared against purely experimental maps is addressed. Taking advantage of the highly validated and physically representative 1-D gas-dynamics engine model and turbocharger validated maps, it is discussed how experimental uncertainties or "out-of-control" variables may impact the experimental results. A methodology is proposed to overcome this point from the modelling perspective. The previous allows performing exclusively turbine technologies/units comparison. In addition, taking as a basis the already developed model, it is possible to explore different optimization calculations, control strategies and provide turbine technology comparisons at engine full and partial loads in a wide range of engine speed. Also, the altitude impact is addressed and load transients are evaluated for two analysed turbine technologies: VGT and WG. In all, it was found that VGT technology shows fewer limitations in extreme working conditions, such as full load curve, where the WG technology represents a limitation in terms of the maximum power output. Full load differences become even more evident in altitude working conditions. When it comes to partial loads, differences in fuel consumption are minor but potentially beneficial for VGTs.