Deep Learning Approach for the Prediction of the Concentration of Chlorophyll ɑ in Seawater. A Case Study in El Mar Menor (Spain)
- González-Enrique, Javier
- Ruiz-Aguilar, Juan Jesús
- Madrid Navarro, Eduardo
- Martínez Álvarez-Castellanos, Rosa
- Felis Enguix, Ivan
- Jerez, José M.
- Turias, Ignacio J.
- 1 Intelligent Modelling of Systems Research Group, ETSI Algeciras, University of Cádiz, Avd. Ramón Puyol s/n, 11202, Cádiz, Algeciras, Spain
- 2 Centro Tecnológico Naval y del Mar (CTN), 30320 Fuente Álamo, Murcia, Spain
- 3 Department of Computer Science, ETS Computer Science, University of Málaga, Bulevar Louis Pasteur, 35. Campus de Teatinos, 29071, Málaga, Spain
ISSN: 2367-3370, 2367-3389
ISBN: 9783031180491, 9783031180507
Año de publicación: 2022
Páginas: 72-85
Tipo: Aportación congreso
Resumen
The goal of this research is to develop accurate and reliable forecasting models for chlorophyll ɑ concentrations in seawater at multiple depth levels in El Mar Menor (Spain). Chlorophyll ɑ can be used as a eutrophication indicator, which is especially essential in a rich yet vulnerable ecosystem like the study area. Bayesian regularized artificial neural networks and Long Short-term Memory Neural Networks (LSTMs) employing a rolling window approach were used as forecasting algorithms with a one-week prediction horizon. Two input strategies were tested: using data from the own time series or including exogenous variables among the inputs. In this second case, mutual information and the Minimum-Redundancy-Maximum-Relevance approach were utilized to select the most relevant variables. The models obtained reasonable results for the univariate input scheme with σ¯¯¯ values over 0.75 in levels between 0.5 and 2 m. The inclusion of exogenous variables increased these values to above 0.85 for the same depth levels. The models and methodologies presented in this paper can constitute a very useful tool to help predict eutrophication episodes and act as decision-making tools that allow the governmental and environmental agencies to prevent the degradation of El Mar Menor.
Referencias bibliográficas
- Perez-Ruzafa, A., Marcos, C., Gilabert, J.: The ecology of the Mar Menor coastal lagoon: A fast changing ecosystem under human pressure. In: Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development (2005)
- Ruiz, J.M., et al.: Informe de evolución y estado actual del Mar Menor en relación al proceso de eutrofización y sus causas. Informe de asesoramiento técnico del Instituto Español de Oceanografía (IEO) (2022)
- U. P. Cartagena Servidor de Datos Cientificos del Mar Menor. https://marmenor.upct.es/docs/. Accessed 6 May 2022
- Jimeno-Sáez, P., Senent-Aparicio, J., Cecilia, J., Pérez-Sánchez, J.: Using machine-learning algorithms for eutrophication modeling: case study of Mar Menor Lagoon (Spain). Int. J. Environ. Res. Public Health 17, 1189 (2020)
- Yu, Z., Yang, K., Luo, Y., Shang, C.: Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. J. Hydrol. 582, 124488 (2020)
- Cho, H., Park, H.: Merged-LSTM and multistep prediction of daily chlorophyll-a concentration for algal bloom forecast. IOP Conf. Ser. Earth Environ. Sci. 351, 012020 (2019). https://doi.org/10.1088/1755-1315/351/1/012020
- Shin, Y.: Prediction of chlorophyll-a concentrations in the Nakdong river using machine learning methods. Water 12, 1822 (2020)
- Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I.M., Barcala, E., Hegazi, M.I., Quispe, J.: Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons. Estuarine, Coastal Shelf Sci. 75(1–2), 175–188 (2007). https://doi.org/10.1016/j.ecss.2007.04.030
- Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1, pp 318–362. MIT Press, Cambridge, MA, USA (1986)
- Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)
- MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4, 415–447 (1992)
- Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
- Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Unc., Fuzz. Knowl.-Based Syst. 6, 107–116 (1998)
- Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)
- Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)
- González-Enrique, J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Urda, D., Turias, I.J.: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain). Stoch. Environ. Res. Risk Assess. 35(10), 1999–2019 (2021). https://doi.org/10.1007/s00477-021-01992-4
- González-Enrique, J., et al.: Artificial neural networks, sequence-to-sequence LSTMs, and exogenous variables as analytical tools for NO2 (air pollution) forecasting. A case study in the Bay of Algeciras (Spain). Sensors 21, 1770 (2021)
- Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. (Ny) 191, 192–213 (2012)
- Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)
- Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. John Wiley & Sons Inc., New York, NY, USA (1987)
- Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Machine Learning Algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 2951–2959. Curran Associates, Inc. (2012)