Design and applications of smart antenna systems for wireless networks in the context of the Internet of Things (IOT)

  1. Gil Martínez, Alejandro Rafael
Supervised by:
  1. José Luis Gómez Tornero Director
  2. David Cañete Rebenaque Co-director

Defence university: Universidad Politécnica de Cartagena

Fecha de defensa: 23 January 2023

Committee:
  1. Eva Rajo Iglesias Chair
  2. Alejandro Álvarez Melcón Secretary
  3. Astrid Algaba Brazalez Committee member

Type: Thesis

Abstract

This doctoral dissertation has been presented in the form of thesis by publication. Leaky-Wave Antennas (LWA) consist on a waveguide structure which allows the leakage of part of the power along the structure. For this reason, the radiation of the antenna is produced by the leakage of power. In order to produce coherent radiation, it is necessary to control this leakage rate along the radiating structure. Thus, precisely adjusting the leakage rate, the shape of the radiation pattern is controlled. LWAs have been widely studied by the scientific community due to their advantages, such as, simple feeding network, high directivity and passive frequency-scanning performance. However, they present certain disadvantages among which, the most important to highlight is the beam-squinting effect. TThis is due to the inherent dispersion property of this type of antenna. In addition, LWAs present difficulties when generating coherent radiation in broadside and endfire directions, increasing the complexity of the design for radiation in these directions. LWAs have been relatively unused in practical applications to date, despite of their benefits. The few applications in which they have been used are frequency modulated continuous wave radars and near-field frequency controlled focusing systems.This thesis proposes the use of LWAs in practical applications by exploiting the advantages mentioned above while taking into account the drawbacks of this type of antennas so that their use is not limited. Recently, LWAs have been proposed for low-cost localization applications, as they allow the design of planar structures with directive beams. In addition, due to the exponential increase in the use of technology, it is necessary to find new technologies for higher, faster and more efficient data transmission while maintaining low manufacturing costs. Therefore, LWAs can be a crucial solution mixing low manufacturing costs, high integrability in different systems due to their planar printed technology and high directivity while taking advantage of their dispersive characteristic that provides passive frequency scanning. In this context, the main contribution of this Thesis consist of the study, analysis, design and integration of LWAs in real and practical applications. This Thesis presents the following three main contributions, defined in the three main blocks of this document: • Study and analysis of LWAs for its use in direction of arrival estimation systems based on monopulse amplitude techniques. Compare the characteristics and performance of LWAs along with widely used commercial antennas. For this purpose, design and manufacture the HWM-LWAs in order to compare their performance with commercially acquired panel antennas. Since each application requires the design of a new and different HWM-LWA, a main objective of this block is to study and propose an efficient antenna analysis and design technique to facilitate obtaining frequency-scanned monopulse patterns. • Once analyzed that LWAs are a feasible solution for its use in real localization applications due to their several advantages, integrate the designed half-width microstrip (HWM-LWAs) in digital indoor angle-of-arrival estimation systems. Therefore, design, develop, configure and integrate LWAs in different systems based on the Wi-Fi ISM 2.4 GHz and 5 GHz frequency bands. Finally, compare the obtained estimation results with other proposed solutions to corroborate that LWAs can be used in real applications. • Extending the use of antennas for angular localization in sensor networks using the 900 MHz UHF frequency band: the main properties of low manufacturing cost and passive frequency beam scanning can be used in other applications. Thus, the localization estimation of passive RFID tags is studied, as well as their application in Wireless Sensor Networks (WSNs) using active tags with LORA technology. This document is presented as a Thesis by compilation, so the 4 journal articles that have been published during the Ph.D program will be presented and briefly explained. Besides, some conference articles and other work under review will be also presented to expose some of the research that has not been published in journals. The document is organized as outlined hereafter: In Part I, a state-of-the-art contextualization, a rigorous explanation about LWAs and the previous applications mentioned above is presented. The next two parts are dedicated to present and briefly explain the published works included in this Thesis and their main contributions. In Part II the explanation of the four papers which compose the compendium are presented. This is, LWAs analysis for direction of arrival estimation and the integration of LWAs in digital Wi-Fi localization systems in chapter 1, the UHF 900 MHz ISM frequency band is used in conjunction with HWM-LWAs in chapter 2, then, it is implemented in a real time system for direction of arrival estimation of multi RFID tags in chapter 3 and LoRa integration in chapter 4. Finally, in Part III, the overall conclusions and the future research lines are discussed