Spinning Submerged Filter Adsorber versus Packed Bed Adsorber for the Continuous Removal of Antibiotics from Wastewater with Activated Carbon
- 1 Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Spain
ISSN: 2073-4441
Datum der Publikation: 2023
Ausgabe: 15
Nummer: 9
Seiten: 1726
Art: Artikel
Andere Publikationen in: Water
Indikatoren
JCR (Journal Impact Factor)
(Indikator für das letzte auf diesem Portal verfügbare Jahr, Jahr 2022)- Jahr 2022
- Impact Factor der Zeitschrift: 3.4
- Impact Factor ohne Selbstzitierung: 2.9
- Article influence score: 0.517
- Höchstes Quartil: Q2
- Bereich: ENVIRONMENTAL SCIENCES Quartil: Q2 Position im Bereich: 135/275 (Ausgabe: SCIE)
- Bereich: WATER RESOURCES Quartil: Q2 Position im Bereich: 38/103 (Ausgabe: SCIE)
SCImago Journal Rank
(Indikator für das letzte auf diesem Portal verfügbare Jahr, Jahr 2022)- Jahr 2022
- Impact SJR der Zeitschrift: 0.723
- Höchstes Quartil: Q1
- Bereich: Aquatic Science Quartil: Q1 Position im Bereich: 48/238
- Bereich: Geography, Planning and Development Quartil: Q1 Position im Bereich: 165/785
- Bereich: Biochemistry Quartil: Q2 Position im Bereich: 193/445
- Bereich: Water Science and Technology Quartil: Q2 Position im Bereich: 67/256
CIRC
- Sozialwissenschaften: A
Scopus CiteScore
(Indikator für das letzte auf diesem Portal verfügbare Jahr, Jahr 2022)- Jahr 2022
- CiteScore der Zeitschrift: 5.5
- Bereich: Geography, Planning and Development Perzentil: 85
- Bereich: Aquatic Science Perzentil: 82
- Bereich: Water Science and Technology Perzentil: 76
- Bereich: Biochemistry Perzentil: 51
Journal Citation Indicator (JCI)
(Indikator für das letzte auf diesem Portal verfügbare Jahr, Jahr 2022)- Jahr 2022
- JCI der Zeitschrift: 0.66
- Höchstes Quartil: Q2
- Bereich: ENVIRONMENTAL SCIENCES Quartil: Q2 Position im Bereich: 156/334
- Bereich: WATER RESOURCES Quartil: Q2 Position im Bereich: 56/131
Zusammenfassung
The removal of antibiotics from wastewater is receiving considerable attention to fulfill water quality parameters required for reuse. This study compares a spinning submerged filter adsorber with a fixed bed adsorber for continuous antibiotic removal. Adsorbers were evaluated with micro granular activated carbon (μGAC: 508 μm), coarse powder activated carbon (cPAC: 197 μm), powder activated carbon (PAC: 77 μm), and a domestic wastewater effluent spiked with a mixture of amoxicillin, sulfamethoxazole, and levofloxacin with concentrations ranging from 10 to 50 mg/L. The fixed bed adsorber packed with cPAC was the most efficient adsorber running with wastewater spiked with 50 mg/L of each antibiotic and an empty bed contact time (EBCT) of 4.5 min. The spinning submerged filter adsorber configuration also provided high removal effectiveness using a 15 g/L concentration of PAC but with a lower hydraulic retention time (HRT) of 40 min. This adsorption unit can be filled with small PAC particles, unlike packed beds, and PAC concentrations can be increased up to 150 g/L if necessary. It combines adsorption and filtration with a completely mixed mode of operation in which the PAC concentration can be adapted to effluent micropollutant concentrations, making it an interesting alternative for adsorption processes.
Bibliographische Referenzen
- Kovalakova, (2020), Chemosphere, 251, pp. 126351, 10.1016/j.chemosphere.2020.126351
- Khan, (2021), J. Water Process Eng., 41, pp. 101990, 10.1016/j.jwpe.2021.101990
- Omuferen, (2022), Environ. Monit. Assess., 194, pp. 306, 10.1007/s10661-022-09846-4
- Wang, (2020), Sci. Total Environ., 744, pp. 140997, 10.1016/j.scitotenv.2020.140997
- Balakrishna, (2017), Ecotoxicol. Environ. Saf., 137, pp. 113, 10.1016/j.ecoenv.2016.11.014
- European Parliament (2020). Commission Implementing Decision
- (EU) 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council, European Parliament.
- Oberoi, (2019), Environ. Sci. Technol., 53, pp. 7234, 10.1021/acs.est.9b01131
- Sadhwani, (2022), J. Water Process Eng., 45, pp. 102474, 10.1016/j.jwpe.2021.102474
- Ghazal, (2022), J. Clean. Prod., 361, pp. 132079, 10.1016/j.jclepro.2022.132079
- Kosek, (2020), Environ. Sci. Policy, 112, pp. 213, 10.1016/j.envsci.2020.06.011
- Pal, (2022), Sep. Purif. Technol., 295, pp. 121249, 10.1016/j.seppur.2022.121249
- Rout, (2021), Sci. Total Environ., 753, pp. 141990, 10.1016/j.scitotenv.2020.141990
- Rashid, (2021), Environ. Sci. Pollut. Res., 28, pp. 9050, 10.1007/s11356-021-12395-x
- Juela, (2022), Sep. Purif. Technol., 284, pp. 120286, 10.1016/j.seppur.2021.120286
- Grela, A., Kuc, J., Klimek, A., Matusik, J., Pamuła, J., Franus, W., Urbański, K., and Bajda, T. (2023). Erythromycin Scavenging from Aqueous Solutions by Zeolitic Materials Derived from Fly Ash. Molecules, 28.
- Isaeva, V.I., Vedenyapina, M.D., Kurmysheva, A.Y., Weichgrebe, D., Nair, R.R., Nguyen, N.P.T., and Kustov, L.M. (2021). Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules, 26.
- Mangla, (2022), J. Hazard. Mater., 425, pp. 127946, 10.1016/j.jhazmat.2021.127946
- Ahmed, (2018), Ecotoxicol. Environ. Saf., 149, pp. 257, 10.1016/j.ecoenv.2017.12.012
- Mulder, M., Antakyali, D., and Ante, S. (2015). Costs of Removal of Micropollutants from Effluents of Municipal Wastewater Treatment Plants—General Cost Estimates for the Netherlands Based on Implemented Full Scale Post Treatments of Effluents of Wastewater Treatment Plants in Germany and Switzerland, STOWA and Waterboard the Dommel.
- Paredes, (2018), Chem. Eng. J., 345, pp. 79, 10.1016/j.cej.2018.03.120
- Guillossou, (2019), Chemosphere, 218, pp. 1050, 10.1016/j.chemosphere.2018.11.182
- Nasrollahi, (2022), Sci. Total Environ., 838, pp. 156010, 10.1016/j.scitotenv.2022.156010
- Morsch, (2021), Sep. Purif. Technol., 277, pp. 119052, 10.1016/j.seppur.2021.119052
- Angosto, (2022), J. Water Process Eng., 45, pp. 102515, 10.1016/j.jwpe.2021.102515
- Adriaenssens, (2021), J. Antimicrob. Chemother., 76, pp. 37, 10.1093/jac/dkab176
- Sinha, (2019), J. Phys. Chem. C, 123, pp. 20195, 10.1021/acs.jpcc.9b02116
- Horvat, (2014), Chromatographia, 77, pp. 1059, 10.1007/s10337-014-2685-x
- Chu, (2020), Chem. Eng. J., 380, pp. 122513, 10.1016/j.cej.2019.122513
- Katsigiannis, (2015), Chem. Eng. J., 280, pp. 49, 10.1016/j.cej.2015.05.109
- Biswal, (2022), J. Clean. Prod., 349, pp. 131421, 10.1016/j.jclepro.2022.131421
- Yu, (2016), Chemosphere, 153, pp. 365, 10.1016/j.chemosphere.2016.03.083
- Chakhtouna, (2021), Sep. Purif. Technol., 266, pp. 118592, 10.1016/j.seppur.2021.118592
- Putra, (2009), Water Res., 43, pp. 2419, 10.1016/j.watres.2009.02.039
- Moussavi, (2013), Chem. Eng. J., 217, pp. 119, 10.1016/j.cej.2012.11.069
- Xu, (2021), Environ. Pollut., 272, pp. 115968, 10.1016/j.envpol.2020.115968
- Wu, (2022), J. Hazard Mater., 426, pp. 127798, 10.1016/j.jhazmat.2021.127798
- Wang, (2022), Bioresour. Technol., 351, pp. 127025, 10.1016/j.biortech.2022.127025
- Yao, (2018), Environ. Sci. Pollut. Res., 25, pp. 25659, 10.1007/s11356-017-8849-0
- Huang, (2020), Environ. Pollut., 258, pp. 113809, 10.1016/j.envpol.2019.113809
- Palestino, (2021), J. Mol. Liq., 324, pp. 114740, 10.1016/j.molliq.2020.114740
- (2016), Adsorption, 22, pp. 89, 10.1007/s10450-016-9758-0
- Diaz, E., Manzano, F.J., Villamil, J., Rodriguez, J.J., and Mohedano, F.A. (2019). Low-cost activated grape seed-derived hydrochar through hydrothermal carbonization and chemical activation for sulfamethoxazole adsorption. Appl. Sci., 9.
- Alves, (2018), Water Res., 144, pp. 402, 10.1016/j.watres.2018.07.037
- Guillossou, (2020), Chemosphere, 243, pp. 125306, 10.1016/j.chemosphere.2019.125306
- Fundneider, (2021), Water Res., 191, pp. 116765, 10.1016/j.watres.2020.116765
- Benstoem, (2017), Chemosphere, 185, pp. 105, 10.1016/j.chemosphere.2017.06.118
- Giannakoudakis, D., Meili, L., and Anastopoulos, I. (2022). Advanced Materials for Sustainable Environmental Remediation, Elsevier.
- Hu, (2020), Sep. Purif. Technol., 238, pp. 116399, 10.1016/j.seppur.2019.116399
- Darweesh, (2017), Environ. Toxicol. Pharmacol., 50, pp. 159, 10.1016/j.etap.2017.02.005
- (2017), J. Clean. Prod., 161, pp. 947, 10.1016/j.jclepro.2017.05.197
- Zietzschmann, (2016), Water Res., 92, pp. 180, 10.1016/j.watres.2016.01.056
- Evers, (2022), J. Water Process Eng., 47, pp. 102755, 10.1016/j.jwpe.2022.102755
- Campinas, (2022), J. Water Process Eng., 49, pp. 102975, 10.1016/j.jwpe.2022.102975
- Larsson, (2017), J. Environ. Manag., 193, pp. 491, 10.1016/j.jenvman.2017.02.042