Spinning Submerged Filter Adsorber versus Packed Bed Adsorber for the Continuous Removal of Antibiotics from Wastewater with Activated Carbon

  1. Obón, José M. 1
  2. Fernández-López, José A. 1
  3. Alacid, Mercedes 1
  4. Angosto, José M. 1
  1. 1 Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Spain
Zeitschrift:
Water

ISSN: 2073-4441

Datum der Publikation: 2023

Ausgabe: 15

Nummer: 9

Seiten: 1726

Art: Artikel

DOI: 10.3390/W15091726 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Water

Zusammenfassung

The removal of antibiotics from wastewater is receiving considerable attention to fulfill water quality parameters required for reuse. This study compares a spinning submerged filter adsorber with a fixed bed adsorber for continuous antibiotic removal. Adsorbers were evaluated with micro granular activated carbon (μGAC: 508 μm), coarse powder activated carbon (cPAC: 197 μm), powder activated carbon (PAC: 77 μm), and a domestic wastewater effluent spiked with a mixture of amoxicillin, sulfamethoxazole, and levofloxacin with concentrations ranging from 10 to 50 mg/L. The fixed bed adsorber packed with cPAC was the most efficient adsorber running with wastewater spiked with 50 mg/L of each antibiotic and an empty bed contact time (EBCT) of 4.5 min. The spinning submerged filter adsorber configuration also provided high removal effectiveness using a 15 g/L concentration of PAC but with a lower hydraulic retention time (HRT) of 40 min. This adsorption unit can be filled with small PAC particles, unlike packed beds, and PAC concentrations can be increased up to 150 g/L if necessary. It combines adsorption and filtration with a completely mixed mode of operation in which the PAC concentration can be adapted to effluent micropollutant concentrations, making it an interesting alternative for adsorption processes.

Bibliographische Referenzen

  • Kovalakova, (2020), Chemosphere, 251, pp. 126351, 10.1016/j.chemosphere.2020.126351
  • Khan, (2021), J. Water Process Eng., 41, pp. 101990, 10.1016/j.jwpe.2021.101990
  • Omuferen, (2022), Environ. Monit. Assess., 194, pp. 306, 10.1007/s10661-022-09846-4
  • Wang, (2020), Sci. Total Environ., 744, pp. 140997, 10.1016/j.scitotenv.2020.140997
  • Balakrishna, (2017), Ecotoxicol. Environ. Saf., 137, pp. 113, 10.1016/j.ecoenv.2016.11.014
  • European Parliament (2020). Commission Implementing Decision
  • (EU) 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council, European Parliament.
  • Oberoi, (2019), Environ. Sci. Technol., 53, pp. 7234, 10.1021/acs.est.9b01131
  • Sadhwani, (2022), J. Water Process Eng., 45, pp. 102474, 10.1016/j.jwpe.2021.102474
  • Ghazal, (2022), J. Clean. Prod., 361, pp. 132079, 10.1016/j.jclepro.2022.132079
  • Kosek, (2020), Environ. Sci. Policy, 112, pp. 213, 10.1016/j.envsci.2020.06.011
  • Pal, (2022), Sep. Purif. Technol., 295, pp. 121249, 10.1016/j.seppur.2022.121249
  • Rout, (2021), Sci. Total Environ., 753, pp. 141990, 10.1016/j.scitotenv.2020.141990
  • Rashid, (2021), Environ. Sci. Pollut. Res., 28, pp. 9050, 10.1007/s11356-021-12395-x
  • Juela, (2022), Sep. Purif. Technol., 284, pp. 120286, 10.1016/j.seppur.2021.120286
  • Grela, A., Kuc, J., Klimek, A., Matusik, J., Pamuła, J., Franus, W., Urbański, K., and Bajda, T. (2023). Erythromycin Scavenging from Aqueous Solutions by Zeolitic Materials Derived from Fly Ash. Molecules, 28.
  • Isaeva, V.I., Vedenyapina, M.D., Kurmysheva, A.Y., Weichgrebe, D., Nair, R.R., Nguyen, N.P.T., and Kustov, L.M. (2021). Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules, 26.
  • Mangla, (2022), J. Hazard. Mater., 425, pp. 127946, 10.1016/j.jhazmat.2021.127946
  • Ahmed, (2018), Ecotoxicol. Environ. Saf., 149, pp. 257, 10.1016/j.ecoenv.2017.12.012
  • Mulder, M., Antakyali, D., and Ante, S. (2015). Costs of Removal of Micropollutants from Effluents of Municipal Wastewater Treatment Plants—General Cost Estimates for the Netherlands Based on Implemented Full Scale Post Treatments of Effluents of Wastewater Treatment Plants in Germany and Switzerland, STOWA and Waterboard the Dommel.
  • Paredes, (2018), Chem. Eng. J., 345, pp. 79, 10.1016/j.cej.2018.03.120
  • Guillossou, (2019), Chemosphere, 218, pp. 1050, 10.1016/j.chemosphere.2018.11.182
  • Nasrollahi, (2022), Sci. Total Environ., 838, pp. 156010, 10.1016/j.scitotenv.2022.156010
  • Morsch, (2021), Sep. Purif. Technol., 277, pp. 119052, 10.1016/j.seppur.2021.119052
  • Angosto, (2022), J. Water Process Eng., 45, pp. 102515, 10.1016/j.jwpe.2021.102515
  • Adriaenssens, (2021), J. Antimicrob. Chemother., 76, pp. 37, 10.1093/jac/dkab176
  • Sinha, (2019), J. Phys. Chem. C, 123, pp. 20195, 10.1021/acs.jpcc.9b02116
  • Horvat, (2014), Chromatographia, 77, pp. 1059, 10.1007/s10337-014-2685-x
  • Chu, (2020), Chem. Eng. J., 380, pp. 122513, 10.1016/j.cej.2019.122513
  • Katsigiannis, (2015), Chem. Eng. J., 280, pp. 49, 10.1016/j.cej.2015.05.109
  • Biswal, (2022), J. Clean. Prod., 349, pp. 131421, 10.1016/j.jclepro.2022.131421
  • Yu, (2016), Chemosphere, 153, pp. 365, 10.1016/j.chemosphere.2016.03.083
  • Chakhtouna, (2021), Sep. Purif. Technol., 266, pp. 118592, 10.1016/j.seppur.2021.118592
  • Putra, (2009), Water Res., 43, pp. 2419, 10.1016/j.watres.2009.02.039
  • Moussavi, (2013), Chem. Eng. J., 217, pp. 119, 10.1016/j.cej.2012.11.069
  • Xu, (2021), Environ. Pollut., 272, pp. 115968, 10.1016/j.envpol.2020.115968
  • Wu, (2022), J. Hazard Mater., 426, pp. 127798, 10.1016/j.jhazmat.2021.127798
  • Wang, (2022), Bioresour. Technol., 351, pp. 127025, 10.1016/j.biortech.2022.127025
  • Yao, (2018), Environ. Sci. Pollut. Res., 25, pp. 25659, 10.1007/s11356-017-8849-0
  • Huang, (2020), Environ. Pollut., 258, pp. 113809, 10.1016/j.envpol.2019.113809
  • Palestino, (2021), J. Mol. Liq., 324, pp. 114740, 10.1016/j.molliq.2020.114740
  • (2016), Adsorption, 22, pp. 89, 10.1007/s10450-016-9758-0
  • Diaz, E., Manzano, F.J., Villamil, J., Rodriguez, J.J., and Mohedano, F.A. (2019). Low-cost activated grape seed-derived hydrochar through hydrothermal carbonization and chemical activation for sulfamethoxazole adsorption. Appl. Sci., 9.
  • Alves, (2018), Water Res., 144, pp. 402, 10.1016/j.watres.2018.07.037
  • Guillossou, (2020), Chemosphere, 243, pp. 125306, 10.1016/j.chemosphere.2019.125306
  • Fundneider, (2021), Water Res., 191, pp. 116765, 10.1016/j.watres.2020.116765
  • Benstoem, (2017), Chemosphere, 185, pp. 105, 10.1016/j.chemosphere.2017.06.118
  • Giannakoudakis, D., Meili, L., and Anastopoulos, I. (2022). Advanced Materials for Sustainable Environmental Remediation, Elsevier.
  • Hu, (2020), Sep. Purif. Technol., 238, pp. 116399, 10.1016/j.seppur.2019.116399
  • Darweesh, (2017), Environ. Toxicol. Pharmacol., 50, pp. 159, 10.1016/j.etap.2017.02.005
  • (2017), J. Clean. Prod., 161, pp. 947, 10.1016/j.jclepro.2017.05.197
  • Zietzschmann, (2016), Water Res., 92, pp. 180, 10.1016/j.watres.2016.01.056
  • Evers, (2022), J. Water Process Eng., 47, pp. 102755, 10.1016/j.jwpe.2022.102755
  • Campinas, (2022), J. Water Process Eng., 49, pp. 102975, 10.1016/j.jwpe.2022.102975
  • Larsson, (2017), J. Environ. Manag., 193, pp. 491, 10.1016/j.jenvman.2017.02.042