Electronic and transport properties in circular graphene structures with a pentagonal disclination

  1. Jódar, Esther
  2. Pérez–Garrido, Antonio
  3. Rojas, Fernando
Revista:
Nanoscale Research Letters

ISSN: 1556-276X

Año de publicación: 2013

Volumen: 8

Número: 1

Tipo: Artículo

DOI: 10.1186/1556-276X-8-258 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Nanoscale Research Letters

Resumen

We investigate the electronic and transport properties of circular graphene structures (quantum dots) that include a pentagonal defect. In our calculations, we employ a tight-binding model determining total and local density of states, transmission function and participation number. For the closed structure, we observe that the effect of the defect is concentrated mainly on energies near to zero, which is characteristic of edge states in graphene. The density of states and transmission functions for small energies show several peaks associated with the presence of quasi-bound states generated by the defect and localized edge states produced by both the circular boundaries of the finite lattice and induced by the presence of the pentagonal defect. These results have been checked by calculating the participation number, which is obtained from the eigenstates. We observe changes in the available quasi-bound states due to the defect and the creation of new peaks in the transmission function.

Referencias bibliográficas

  • Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, S R: The structure of suspended graphene sheets. Phys Rev Lett 1994, 72: 1878. 10.1103/PhysRevLett.72.1878
  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene. Rev Mod Phys 2009, 81: 109. 10.1103/RevModPhys.81.109
  • Geim AK: Graphene: Status and prospects. Science 2009, 324: 1530. 10.1126/science.1158877
  • Ihn T, Güttinger J, Molitor F, Schnez S, Schurtenberger E, Jacobsen A, Hellmüller S, Frey T, Dröscher S, Stampfer C, Ensslin K: Graphene single electron transistors. Mater Today 2010, 13: 44.
  • Molitor F, Güttinger J, Stampfer C, Dröscher S, Jacobsen A, Ihn T, Ensslin K: Electronic properties of graphene nanostructures. J Phys: Condens Matter 2011, 23: 243201. 10.1088/0953-8984/23/24/243201
  • Cooper DR, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V: Experimental review of Graphene. ISRN Condens Matter Phys 2012, 2012: 501686.
  • Kim JH, Jung JM, Kwak JY, Jeong JH, Choi BC, Lim KT: Preparation of properties of SWNT/Graphene oxide type flexible transparent conductive film. J Nanosci Nanotechnol 2011, 11: 7424. 10.1166/jnn.2011.4841
  • Yun JS, Yang KS, Kim DH: Multifunctional polydiacetylene-Graphene nanohybrids for biosensor application. J Nanosci Nanotechnol 2011, 11: 5663. 10.1166/jnn.2011.4444
  • Zhang L, Xing Y, He N, Zhang Y, Lu Z, Zhang J, Zhang Z: Preparation of Graphene quantum dots for bioimaging application. J Nanosci Nanotechnol 2012, 12: 2924. 10.1166/jnn.2012.5698
  • Islam MS, Kouzani AZ, Dai XJ, Michalski WP, Gholamhosseini H: Design and analysis of a multilayer localized surface plasmon resonance Graphene biosensor. J Nanosci Nanotechnol 2012, 8: 380.
  • Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A: Direct imaging of lattice atoms and topological defects in Graphene membranes. Nano Lett 2008, 8: 3582. 10.1021/nl801386m
  • Carpio A, Bonilla LL, de Juan F, Vozmediano MAH: Dislocations in graphene. New J Phys 2008, 10: 053021. 10.1088/1367-2630/10/5/053021
  • Rycerz A: Electron transport and quantum-dot energy levels in Z-shaped graphene nanoconstriction with zigzag edges. Acta Phys Polon A 2010, 118: 238.
  • Zhang Y, Hu JP, Bernevig BA, Wang XR, Xie XC, Liu WM: Quantum blockade and loop currents in graphene with topological defects. Phys Rev B 2008, 78: 155413.
  • Zhang Y, Hu JP, Bernevig BA, Wang XR, Xie XC, Liu WM: Impurities in graphene. Phys Status Solidi A 2010, 207: 2726. 10.1002/pssa.201026466
  • Wegner FJ: Inverse participation ratio in 2+Epsilon dimensions. Z Phys B 1980, 36: 209. 10.1007/BF01325284
  • Datta S: Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press; 1995.
  • López Sancho MP, López Sancho JM, Rubio J: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J Phys F: Met Phys 1984, 14: 1205. 10.1088/0305-4608/14/5/016
  • Li TC, Lu SP: Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 2008, 77: 085408.