Microwave dielectrometry adapted to environments

  1. GUTIÉRREZ CANO, JOSÉ DANIEL
Dirigida por:
  1. José Manuel Catalá Civera Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 19 de julio de 2022

Tribunal:
  1. Vicente Enrique Boria Esbert Presidente/a
  2. Juan Monzó Cabrera Secretario
  3. Yasir Alfadhl Vocal

Tipo: Tesis

Resumen

Permittivity is a physical property of materials describing their behavior in the presence of an electromagnetic field. Microwave sensors can play an essential role in detecting, monitoring, or process control tasks as some physicochemical parameters of materials produce measurable changes in dielectric properties. Besides, microwave heating technology is gaining increasing relevance for the ecological transition and decarbonization of industrial processes, and permittivity is the essential parameter for the successful development of these new processes. Permittivity depends on many factors and thus, permittivity measurement methods must be adapted to the needs of the material and the measurement environment. The number of applications that require the monitoring or measurement of dielectric properties, the high dependencies of this magnitude under different conditions, and the need to make this technology available to a broader and less specialized user justify the development of this work. This thesis aims to develop new devices for the monitoring and characterization of dielectrics adapted to different environments, covering a wide range of materials' formats, shapes, and properties. The first two publications included in the thesis describe two different approaches to address permittivity measurements. The first paper describes a versatile, stand-alone, and easy-to-use instrument for measuring the permittivity materials inside tubes. The design of the cavity achieved an excellent sensitivity, and the study of the coupling network allowed the characterization of low, moderate, and high-loss materials with the same setup. This device included an in-house portable vector reflectometer, making it portable and cost-affordable. The features of the developed instrument allow straightforward use by non-specialized personnel and provide versatility in many situations. The second publication presents a specific open-ended coaxial design with increased sensitivity to determine the permittivity of lossy food products as a function of temperature at RF frequencies. This paper highlight the relevance of selecting the most suitable measurement technique, adapted to the environment and particularities of the material, for the appropriate determination of permittivity. The following two papers describe the development and use of a near-field scanning microwave microscope with micrometric resolution to determine permittivity maps of heterogeneous planar materials at microwave frequencies. The different elements comprising the microscope instrument and the analysis techniques to determine permittivity values from the resonance measurements were described throughout both works. In the first paper, microwave technology was employed for the first time in anti-counterfeiting applications by obtaining the dielectric mark of a banknote watermark. Besides, this study showed the ability of microwave energy to detect hidden marks behind dielectric or metallic layers, opening new possibilities for developing optically opaque security features untraceable by optical means. The second study demonstrates the versatility of this system in determining the dielectric properties of heterogeneous planar materials by measuring the dielectric response of rock specimens. The methods developed in this thesis dissertation increase the portfolio of dielectric characterization systems and can help a wide range of scientific and industrial sectors in dielectric monitoring and characterization tasks, making these works more convenient and accessible.