Emergent scalar symmetry in discrete dynamical systems

  1. Alcover-Garau, Pedro-María 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Discrete and Continuous Dynamical Systems - B

ISSN: 1531-3492 1553-524X

Año de publicación: 2023

Volumen: 0

Número: 0

Páginas: 0-0

Tipo: Artículo

DOI: 10.3934/DCDSB.2023085 GOOGLE SCHOLAR

Otras publicaciones en: Discrete and Continuous Dynamical Systems - B

Referencias bibliográficas

  • 10.1016/j.cnsns.2016.06.016
  • 10.1016/j.cnsns.2019.104995
  • 10.1007/978-1-84882-181-1
  • <p>B. Branner, The Mandelbrot set, In <i>Chaos and fractals (Providence, RI, 1988)</i>, volume 39 of <i>Proc. Sympos. Appl. Math.</i>, pages 75-105. Amer. Math. Soc., Providence, RI, 1989.</p>
  • 10.1016/0898-1221(94)00188-X
  • 10.1016/0375-9601(91)90404-V
  • <p>G. Dahlquist and Â. Bjorck, <i>Numerical Methods in Scientific Computing: Volume 1</i>, Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics, 2008.</p>
  • <p>R. L. Devaney, <i>An Introduction to Chaotic Dynamical Systems</i>, Second edition. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.</p>
  • 10.1109/MCAS.2013.2271444
  • 10.1007/978-0-387-21607-2
  • 10.1007/978-1-4612-4574-2
  • 10.1016/0885-064X(87)90024-0
  • 10.1109/TAC.2012.2225513
  • <p>J. G. Hocking and G. S. Young, <i>Topology</i>, Addison-Wesley series in mathematics. Dover Publications, 1988.</p>
  • 10.1016/0167-2789(91)90234-Z
  • 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  • <p>R. Lozi, Can we trust in numerical computations of chaotic solutions of dynamical systems?, <i>Topology and Dynamics of Chaos</i>, 63-98, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 84, World Sci. Publ., Hackensack, NJ, 2013.</p>
  • 10.1016/0375-9601(93)90011-N
  • 10.1049/joe.2014.0228
  • 10.1016/j.amc.2018.02.020
  • 10.1016/j.amc.2018.04.063
  • <p>M. L. Overton, <i>Numerical Computing with IEEE Floating Point Arithmetic</i>, Society for Industrial and Applied Mathematics, 2001.</p>
  • <p>B. Parhami, <i>Computer Arithmetic: Algorithms and Hardware Designs</i>, Oxdord University Press. Higher Education Division, 2nd edition edition, 2012.</p>
  • <p>H. O. Peitgen, National Council of Teachers of Mathematics, H. Jürgens and D. Saupe, <i>Fractals for the Classroom: Part Two: Complex Systems and Mandelbrot Set</i>., Fractals for the Classroom. Springer, 1992.</p>
  • <p>Z. Peric, M. Savic, M. Dincic, N. Vucic, D. Djosic and S. Milosavljevic, Floating point and fixed point 32-bits quantizers for quantization of weights of neural networks, In <i>2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)</i>, 2021, 1-4.</p>
  • <p>K. H. Rosen, <i>Elementary Number Theory</i>, Pearson Education, 2018.</p>
  • 10.15388/NA.2010.15.1.14368
  • <p>Ieee standard for floating-point arithmetic, <i>IEEE Std 754-2008</i>, 2008, 1-70.</p>
  • <p>Ieee standard for floating-point arithmetic, <i>IEEE Std 754-2019 (Revision of IEEE 754-2008)</i>, 2019, 1-84.</p>