Ostreopsis cf. ovata from western Mediterranean Sea: Physiological responses under different temperature and salinity conditions

  1. Carnicer, Olga
  2. García-Altares, María
  3. Andree, Karl B.
  4. Tartaglione, Luciana
  5. Dell’Aversano, Carmela
  6. Ciminiello, Patrizia
  7. de la Iglesia, Pablo
  8. Diogène, Jorge
  9. Fernández-Tejedor, Margarita
Revista:
Harmful Algae

ISSN: 1568-9883

Año de publicación: 2016

Volumen: 57

Páginas: 98-108

Tipo: Artículo

DOI: 10.1016/J.HAL.2016.06.002 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Harmful Algae

Resumen

The dinoflagellate Ostreopsis cf. ovata proliferates seasonally in the Mediterranean Sea, producing palytoxin-like compounds (ovatoxins) which are considered among the most potent marine toxins. Blooms have been related to several toxic events in which respiratory problems in humans and mortality of benthic marine organisms have been observed. In the coming decades, an increase in temperature and salinity is predicted in the Mediterranean Sea as a consequence of global warming that may provoke alterations in the dynamics of marine microorganisms. In this study, the physiological effects of changes in water temperature and salinity were analyzed, and their interaction through a multi-factorial experiment using two strains of O. cf. ovata in culture that had been isolated from the western Mediterranean Sea. In order to perform an accurate and reliable estimation of cell abundance, hydrochloric acid and sodium-ethylenediaminetetraacetic acid treatments were evaluated for the purpose of disaggregating cell clumps, with the former providing lower counting errors, especially after the stationary phase. Results of the physiological study showed that growth was inhibited at 19 °C for all salinities. The highest growth rates were registered at 24 °C for both strains (0.48 ± 0.05 div day−1), and a significant variability in growth rate was found among salinities at 24 °C and 28 °C. Two groups were distinguished by cell size in all high temperature conditions and a positive correlation was found between the amount of small cells and growth rate. The concentration of palytoxin-like compounds in the cultures increased with time and significantly higher amounts of toxin were found at 28 °C in comparison to 24 °C. The results suggest that climate change may not affect intensity of blooms, but their toxicity may be enhanced.

Información de financiación

Referencias bibliográficas

  • Accoroni, (2011), Mar. Pollut. Bull., 62, pp. 2512, 10.1016/j.marpolbul.2011.08.003
  • Accoroni, (2012), Harmful Algae, 19, pp. 15, 10.1016/j.hal.2012.05.003
  • Aligizaki, (2006), Harmful Algae, 5, pp. 717, 10.1016/j.hal.2006.02.005
  • Aligizaki, (2008), Toxicon, 51, pp. 418, 10.1016/j.toxicon.2007.10.016
  • Aligizaki, (2011), Toxicon, 57, pp. 390, 10.1016/j.toxicon.2010.11.014
  • Alldredge, (1993), Deep-Sea Res. I Oceanogr. Res. Pap., 40, pp. 1131, 10.1016/0967-0637(93)90129-Q
  • Amzil, (2012), Mar. Drugs, 10, pp. 477, 10.3390/md10020477
  • Andree, (2011), Appl. Environ. Microbiol., 77, pp. 1651, 10.1128/AEM.01978-10
  • Bates, (1998), pp. 405
  • Biré, (2013), Harmful Algae, 28, pp. 10, 10.1016/j.hal.2013.04.007
  • Biré, (2015), Mar. Drugs, 13, pp. 5425, 10.3390/md13085425
  • Bravo, (2012), Harmful Algae, 18, pp. 24, 10.1016/j.hal.2012.04.001
  • Brissard, (2014), J. Chromatogr. A, 1388, pp. 87, 10.1016/j.chroma.2015.02.015
  • Carnicer, (2015), Cryptogam. Algologie, 36, pp. 101, 10.7872/crya.v36.iss1.2015.101
  • Carnicer, (2015), Environ. Res., pp. 89, 10.1016/j.envres.2015.08.023
  • CEN, (2006)
  • Ciminiello, (2012), Chem. Res. Toxicol., 25, pp. 1243, 10.1021/tx300085e
  • Ciminiello, (2010), Rapid Commun. Mass Spectrom., 24, pp. 2735, 10.1002/rcm.4696
  • Ciminiello, (2008), J. Am. Soc. Mass Spectrom., 19, pp. 111, 10.1016/j.jasms.2007.11.001
  • Ciminiello, (2006), Anal. Chem., 78, pp. 6153, 10.1021/ac060250j
  • David, (2013), Harmful Algae, 30, pp. 44, 10.1016/j.hal.2013.08.006
  • Fraga, (2012), Cryptogam. Algologie, 33, pp. 171, 10.7872/crya.v33.iss2.2011.171
  • García-Altares, (2015), Anal. Bioanal. Chem., 407, pp. 1191, 10.1007/s00216-014-8338-y
  • Granéli, (2011), Harmful Algae, 10, pp. 165, 10.1016/j.hal.2010.09.002
  • Grzebyk, (2003), J. Plankton Res., 25, pp. 1185, 10.1093/plankt/fbg088
  • Guerrini, (2010), Toxicon, 55, pp. 211, 10.1016/j.toxicon.2009.07.019
  • Guillard, (1975), pp. 29
  • Hall, (1999), Nucleic Acids Symp. Ser., 41, pp. 95
  • Honsell, (2013), PLOS ONE, 8, 10.1371/journal.pone.0057291
  • Hoshaw, (1973), pp. 53
  • Hwang, (2013), Bioorg. Med. Chem. Lett., 23, pp. 3023, 10.1016/j.bmcl.2013.03.020
  • IPCC, (2014)
  • Kimura, (1980), J. Mol. Evol., 16, pp. 111, 10.1007/BF01731581
  • Mangialajo, (2011), Toxicon, 57, pp. 408, 10.1016/j.toxicon.2010.11.019
  • Monti, (2012), Cryptogam. Algologie, 33, pp. 113, 10.7872/crya.v33.iss2.2011.113
  • Nascimento, (2012), Harmful Algae, 13, pp. 1, 10.1016/j.hal.2011.09.008
  • Nascimento, (2012), Mar. Pollut. Bull., 64, pp. 1074, 10.1016/j.marpolbul.2012.03.015
  • Parsons, (2007), Harmful Algae, 6, pp. 658, 10.1016/j.hal.2007.01.001
  • Parsons, (2012), Harmful Algae, 14, pp. 107, 10.1016/j.hal.2011.10.017
  • Penna, (2010), J. Biogeogr., 37, pp. 830, 10.1111/j.1365-2699.2009.02265.x
  • Penna, (2012), Cryptogam. Algologie, 33, pp. 153, 10.7872/crya.v33.iss2.2011.153
  • Penna, (2005), J. Phycol., 41, pp. 212, 10.1111/j.1529-8817.2005.04011.x
  • Pezzolesi, (2012), Water Res., 46, pp. 82, 10.1016/j.watres.2011.10.029
  • Pezzolesi, (2014), Harmful Algae, 36, pp. 1, 10.1016/j.hal.2014.03.006
  • Pin, (2001), Mar. Biotechnol., 3, pp. 246, 10.1007/s101260000073
  • Pistocchi, (2011), Toxicon, 57, pp. 421, 10.1016/j.toxicon.2010.09.013
  • Riobó, (2008), Harmful Algae, 7, pp. 415, 10.1016/j.hal.2007.09.001
  • Sato, (2011), PLoS ONE, 6, 10.1371/journal.pone.0027983
  • Scalco, (2012), Harmful Algae, 17, pp. 25, 10.1016/j.hal.2012.02.008
  • Schmidt, (1901), Bot. Tidkrift, 24, pp. 25
  • Sechet, (2012), Cryptogam. Algologie, 33, pp. 89, 10.7872/crya.v33.iss2.2011.089
  • Silva, (1995), Phycologia, 34, pp. 396, 10.2216/i0031-8884-34-5-396.1
  • Suzuki, (2012), Harmful Algae, 20, pp. 81, 10.1016/j.hal.2012.08.002
  • Tanimoto, (2013), Fish. Sci., 79, pp. 285, 10.1007/s12562-013-0597-6
  • Tawong, (2015), Harmful Algae, 44, pp. 37, 10.1016/j.hal.2015.02.011
  • Uchida, (2013), Rapid Commun. Mass Spectrom., 27, pp. 1999, 10.1002/rcm.6657
  • Utermöhl, (1958), vol. 9, pp. 1
  • Vanucci, (2012), Cryptogam. Algologie, 33, pp. 105, 10.7872/crya.v33.iss2.2011.105
  • Vanucci, (2012), Harmful Algae, 15, pp. 78, 10.1016/j.hal.2011.12.003
  • Vidyarathna, (2011), Aquat. Microb. Ecol., 65, pp. 261, 10.3354/ame01555
  • Vidyarathna, (2013), Harmful Algae, 21–22, pp. 54, 10.1016/j.hal.2012.11.006
  • Yamaguchi, (2012), Phycol. Res., 60, pp. 297, 10.1111/j.1440-1835.2012.00660.x