Level-set topology optimization for robust design of structures under internal porosity constraints

  1. Jesús Martínez Frutos 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Actas:
New trends and challenges in the mathematics of optimal design - DNMW04

Editorial: Isaac Newton Institute for Mathematical Sciences

Año de publicación: 2019

Tipo: Aportación congreso

Resumen

Porosity is a well-known phenomenon occurring during various manufacturing processes (casting, welding, additive manufacturing) of solid structures, which undermines their reliability and mechanical performance. The main purpose of this talk is to introduce a new constraint functional of the domain which controls the negative impact of porosity on elastic structures in the framework of shape and topology optimization. The main ingredient of our modeling is the notion of topological derivative, which is used in a slightly unusual way: instead of being an indicator of where to nucleate holes in the course of the optimization process, it is a component of a new constraint functional which assesses the influence of pores on the mechanical performance of structures. The shape derivative of this constraint is calculated and incorporated into a level set based shape optimization algorithm. This approach will be illustrated by several two- and three-dimensional numerical experiments of topology optimization problems constrained by a control on the porosity effect. These works have been conducted together with Grégoire Allaire, Charles Dapogny and Francisco Periago.