Influence of citric acid on the fire behavior of gypsum coatings of construction and structural elements

  1. F.J. Castellón 1
  2. M. Ayala 1
  3. J.A. Flores
  4. M. Lanzón 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2021

Volumen: 71

Número: 342

Tipo: Artículo

DOI: 10.3989/MC.2021.13120 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

To improve the workability in gypsum plasters, additives are sometimes used, including citric acid, which provides acceptable setting times for low w/g ratios, maximizing the mechanical properties of the material. The influence of citric acid on the fire response of gypsum coatings is not well known, and so our aim was to analyze the effects that citric acid produces on the behavior of gypsum plasters exposed to fire. Temperature measurements were made with sensors and thermal imaging cameras while other instrumental techniques, including SEM, XRD and TG, were used to characterize the microstructure and composition of gypsum materials subjected to the action of fire. The fire had a greater effect on gypsum plasters containing citric acid as revealed by the cracking patterns and heat propagation profiles observed. Likewise, micro-cracks were observed in gypsum specimens, containing and non-containing citric acid, exposed to fire. In all cases, the alterations were consistent with the temperature profiles and chemical composition of the faces whether exposed to fire or not.

Referencias bibliográficas

  • Ministerio de Fomento (2019) Código Técnico de la Edificación. Documento Básico Seguridad en caso de incendio. [En l.nea]. Available: https://www.codigotecnico.org/images/stories/pdf/seguridadIncendio/DccSI.pdf.
  • Gibaru, J. (1965) Enlucidos y revestimientos en la lucha contra los incendios (el yeso). Mater. Construcc. 15 [117], 53-67. https://doi.org/10.3989/mc.1965.v15.i117.1769
  • West, R.; Sutton, W.J. (1954) Thermography of gypsum. J. Am. Ceram. Soc. 37 [5], 221-224. https://doi.org/10.1111/j.1151-2916.1954.tb14027.x
  • Khalil, A.A.; Hussein, A.T.; Gad, G.M. (1971) On the thermochemistry of gypsum. J. Appl. Chem. Biotech. 21 [11], 314-316. https://doi.org/10.1002/jctb.5020211102
  • Ryan, J.V. (1962) Study of gypsum plasters exposed to fire. J. Res. Natio. Bur. Stand. Sect. C: Eng. Instrum. 66C [4], 373-394. https://doi.org/10.6028/jres.066C.033
  • Karni, J.; Karni, E. (1995) Gypsum in construction: origin and properties. Mater. Struct. 28 [2], 92-100. https://doi.org/10.1007/BF02473176
  • Doleželová, M.; Scheinherrová, L.; Krejsová, J.; Vimmrová, A. (2018) Effect of high temperatures on gypsum-based composites. Constr. Build. Mater. 168, 82-90. https://doi.org/10.1016/j.conbuildmat.2018.02.101
  • Mehaffey, J. R.; Cuerrier, P.; Carisse, G. (1994) A model for predicting heat transfer through gypsum-board/wood-stud walls exposed to fire. Fire Mater. 18 [5], 297-305. https://doi.org/10.1002/fam.810180505
  • Thomas, G. (2002) Thermal properties of gypsum plasterboard at high temperatures. Fire Mater. 26 [1], 37-45. https://doi.org/10.1002/fam.786
  • Kontogeorgos D.A.; Founti, M.A. (2012) Gypsum board reaction kinetics at elevated temperatures. Thermochim. Acta. 529, 6-13. https://doi.org/10.1016/j.tca.2011.11.014
  • Park, S-H.; Manzello, S.L.; Bentz D.P.; Mizukami, T. (2010) Determining thermal properties of gypsum board at elevated temperatures. Fire Mater. 34 [5], 237-250. https://doi.org/10.1002/fam.1017
  • L.zaro, D.; Puente, E.; L.zaro, M.; L.zaro, P.G.; Pe.a, J. (2015) Thermal modelling of gypsum plasterboard assemblies exposed to standard fire tests. Fire Mater. 40 [4], 568-585. https://doi.org/10.1002/fam.2311
  • Weber, B. (2012) Heat transfer mechanisms and models for a gypsum board exposed to fire. Int. J. Heat Mass Transfer. 55 [5-6], 1661-1678. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.022
  • Du, Z.; She, W.; Zuo, W.; Hong, J.; Zhang, Y.; Miao C. (2020) Foamed gypsum composite with heat-resistant admixture under high temperature: Mechanical, thermal and deformation performances. Cem. Concr. Comp. 108,103549. https://doi.org/10.1016/j.cemconcomp.2020.103549
  • Alameda, L.; Calder.n, V.; Junco, C.; Rodr.guez, A.; Gadea, J.; Gutierrez-Gonz.lez, S. (2016) Characterization of gypsum plasterboard with polyurethane foam waste reinforced with polypropylene fibers. Mater. Construcc. 66 [324], e100. https://doi.org/10.3989/mc.2016.06015
  • UNE-EN 1363-1 (2015) Ensayos de resistencia al fuego. Parte 1: Requisitos generales, AENOR.
  • Moneo, L. (2014) Tesis Doctoral. Protecci.n de recipientes de gases licuados y/o hidrocarburos con revestimiento de morteros modificados para evitar fenómeno de bleve, Elche: Universidad Miguel Hernández. Escuela Politécnica Superior de Orihuela.
  • Luna-Galiano, Y.; Cornejo, A.; Leiva, C.; Vilches, L.F.; Fernández-Pereira, C. (2015) Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests. Mater. Construcc. 65 [319], e059. https://doi.org/10.3989/mc.2015.06114
  • Nguyen, Q.T.; Ngo, T.; Tran, P.; Mendis, P.; Aye, L.; Kristombu Baduge, S. (2018) Fire resistance of a prefabricated bushfire bunker using aerated concrete panels. Constr. Build. Mater. 174, 410-420. https://doi.org/10.1016/j.conbuildmat.2018.04.065
  • Correia, J.R.; Branco, F.A.; Ferreira, J.G.; Bai, Y.; Keller, T. (2010) Fire protection systems for building floors made of pultruded GFRP profiles: Part 1: Experimental investigations. Com.: Part B. Engi. 41 [8], 617-629. https://doi.org/10.1016/j.compositesb.2010.09.018
  • Hurlbut, C.; Klein, C. (1898) Manual de Mineralog.a de Dana, Reverté.
  • Badens, E.; Veesler, S.; Boistelle, R. (1999) Crystallization of gypsum from hemihydrate in presence of additives. J. Cryst. Growth. 198-199 [1], 704-709. https://doi.org/10.1016/S0022-0248(98)01206-8
  • Lanz.n, M.; Garc.a-Ru.z, P.A. (2012) Effect of citric acid on setting inhibition and mechanical properties of gypsum building plasters. Constr. Build. Mater. 28 [1], 506-511. https://doi.org/10.1016/j.conbuildmat.2011.06.072
  • Singh, N.B.; Middendorf, B. (2007) Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog. Cryst. Growth Charact. Mater. 53 [1], 57-77. https://doi.org/10.1016/j.pcrysgrow.2007.01.002
  • Magallanes-Rivera, R.X.; Escalante-Garc.a, J.I.; Gorokhovsky, A. (2009) Hydration reactions and microstructural characteristics of hemihydrate with citric and malic acid. Constr. Build. Mater. 23 [3], 1298-1305. https://doi.org/10.1016/j.conbuildmat.2008.07.022
  • Vellmer, C.; Middendorf, B.; Singh, N.B. (2006) Hydration of alpha-hemihydrate in the presence of carboxylic acids. J. Therm. Anal. Calorim. 86, 721-726. https://doi.org/10.1007/s10973-005-7224-4
  • UNE-EN 13279-1 (2009) Yesos de construcci.n y conglomerantes a base de yeso para la construcci.n. Parte 1: Definiciones y especificaciones, AENOR.
  • UNE-EN 13279-2 (2014) Yesos de construcci.n y conglomerantes a base de yeso para la construcci.n. Parte 2: Métodos de ensayo, AENOR.
  • Boisvert, J-P.; Domenech, M.; Foissy, A.; Persello, J.; Mutin, J-C. (2000) Hydration of calcium sulfate hemihydrate (CaSO4..H2O) into gypsum (CaSO4.2H2O). The influence of the sodium poly(acrylate)/surface interaction and molecular weight. J. Cryst. Growth. 220 [4], 579-591. https://doi.org/10.1016/S0022-0248(00)00865-4
  • Inoue, M.; Hirasawa, I. (2013) The relationship between crystal morphology and XRD peak intensity on CaSO4.2H2O. J. Cryst. Growth. 380, 169-175. https://doi.org/10.1016/j.jcrysgro.2013.06.017
  • Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Junco, C; Calder.n, V. (2012) Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Constr. Build. Mater. 28 [1], 653-658 https://doi.org/10.1016/j.conbuildmat.2011.10.055