Case Study: Installing RFID Systems in Supermarkets

  1. Bueno‐Delgado, María-Victoria
  2. Burrull, Francesc
  3. Mariño, Pablo Pavón‐
Libro:
Radio Frequency Identification

ISBN: 978-953-51-3630-9

Año de publicación: 2017

Tipo: Capítulo de Libro

DOI: 10.5772/64972 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Q. Cao, D.R. Jones, H. Sheng. Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information & Management Journal. 2014;51(2):225–239. DOI: 10.1016/j.im.2013.11.007
  • M. Bertolini, G. Ferretti, G. Vignali, A. Volpi. Reducing out of stock, shrinkage and overstock through RFID in the fresh food supply chain: Evidence from an Italian retail pilot. International Journal of RF Technologies. 2013;4(2):107–125. DOI: 10.3233/RFT‐120040
  • A. Parreño‐Marchante, A. Álvarez‐Melcón, M. Trebar, A. Grah, P. Filippin. Improvement of Traceability Processes in the Farmed Fish Supply Chain. In: Z. Zhang, R. Zhang, J. Zhang, editors. LISS 2012. Springer Berlin Heidelberg; 2013. p. 1065–1070. DOI: 10.1007/978‐3‐642‐32054‐5_150
  • Y. ‐M. Hwang, J. Moon, S. Yoo. Developing a RFID‐based food traceability system in Korea Ginseng Industry: Focused on the business process reengineering. International Journal of Control and Automation. 2015;8(4):397–406. DOI: http://dx.doi.org/10.14257/ijca.2015.8.4.36
  • E. C. Jones, C. A. Chung. RFID and Auto‐ID in Planning and Logistics: A Practical Guide for Military UID Applications. CRC Press, Taylor & Francis Group; 2011. 430 p
  • E. Bottani, R. Montanari, A. Volpi. The impact of RFID and EPC network on the bullwhip effect in the Italian FMCG supply chain. International Journal of Production Economics. 2010;124(2):426–432. DOI: doi:10.1016/j.ijpe.2009.12.005
  • S. Piramuthu, W. Zhou. RFID and Sensor Network Automation in the Food Industry: Ensuring Quality and Safety through Supply Chain Visibility. Wiley‐Blackwell UK; 2016. 320 p
  • O. Boyinbode, O. Akinyede. A RFID based inventory control system for Nigerian supermarkets. International Journal of Computer Applications. 2015;116(7):7–12. DOI: 10.5120/20346‐2531
  • P. V. Nikitin. Theory and measurement of backscattering from RFID tags. IEEE Antennas and Propagation. 2006;48(6):212–218. DOI: 10.1109/MAP.2006.323323
  • GS1. EPCglobal standard, EPC code [Internet]. Available from: http://www.gs1.org/epc‐rfid [Accessed: July 11, 2016]
  • GS1. EPC Information Services (EPCIS) [Internet]. Available from: http://www.gs1.org/sites/default/files/docs/epc/epcis_1_1‐standard‐20140520.pdf [Accessed: July 11, 2016]
  • K. Ambekar, V. Dhole, S. Sharma, T. Wadekar. Smart shopping trolley using RFID. International Journal of Advanced Research in Computer Engineering & Technology. 2015;4(10):3875–3877
  • P. Chandrasekar. Smart shopping cart with automatic billing system through RFID and ZigBee. In: International Conference on Information Communication and Embedded Systems; February 27–28, 2014; Chennai. IEEE; 2014. p. 1–4. DOI: 10.1109/ICICES.2014.7033996
  • GS1. EPCglobal Architecture Framework (EPCglobal Network) [Internet]. Available from: http://www.gs1.org/sites/default/files/docs/architecture/architecture_1_2‐framework‐20070910.pdf [Accessed: July 11, 2016]
  • ITU – International Telecommunications Union. Available from: http://www.itu.int [Accessed: July 11, 2016]
  • K. ElMahgoub. Slotted triangular monopole antenna for UHF RFID readers. Applied Computational Electromagnetics Society Journal. 2016;1(1):24–27
  • Q. Xianming, C. K. Goh, Z. N. Chen. A broadband UHF near‐field RFID antenna. IEEE Transactions on Antennas and Propagation. 2011;58(12):3829–3838. DOI: 10.1109/TAP.2010.2078432
  • Z. N. Chen, Q. Xianming, H. L. Chung. A universal UHF RFID reader antenna. IEEE Transactions on Microwave Theory and Techniques. 2009;57(5):1275–1282. DOI: 10.1109/TMTT.2009.2017290
  • L. Zöscher, R. Spreitzer, H. Gross, J. Grosinger, U. Mühlmann, D. Amschl, H. Watzinger, W. Bösch. HF/UHF dual band RFID transponders for an information‐driven public transportation system. E & I Elektrotechnik und Informationstechnik. 2016;133(3):163–175. DOI: 10.1007/s00502‐016‐0405‐y
  • Z. L. Ma, L. J. Jiang, J. Xi, T. T. Ye. A single‐layer compact HF‐UHF dual‐band RFID tag antenna. IEEE Antennas and Wireless Propagation Letters. 2012;11:1257–1260. DOI: 10.1109/LAWP.2012.2225821
  • M. Russoa, P. Šolić, M. Stella. Probabilistic modeling of harvested GSM energy and its application in extending UHF RFID tags reading range. Journal of Electromagnetic Waves and Applications. 2013;27(4):473–484
  • R. Ferrero, F. Gandino, B. Montrucchio, M. Rebaudengo. Experimental Investigation on the Interference between UHF RFID and GSM. In: 2015 International EURASIP Workshop on RFID Technology (EURFID); October 22–23, 2015; Rosenheim. IEEE; 2015. p. 140–143. DOI: 10.1109/EURFID.2015.7332399
  • G. Ibrahim, A. Plytage. UHF RFID systems; Their susceptibility to backscattered signals induced by electronic ballast driven fluorescent lamps. IEEE Transactions on Antennas and Propagation. 2010;58(7):2473–2478. DOI: 10.1109/TAP.2010.2048841
  • S.‐K. Kuo, J.‐Y. Hsu, Y.‐H. Hung. Analysis and design of an UHF RFID metal tag using magnetic composite material as substrate. Progress in Electromagnetics Research B. 2010;24:49–62. DOI: 10.2528/PIERB10070107
  • Y. Kim. Design of near omnidirectional UHF RFID tag with one‐off seal function for liquid bottles. Microwave and Optical Technology Letters. 2013;55(2):375–379. DOI: 10.1002/mop.27285
  • H.‐W. Son, H.‐G. Jeon, J.‐H. Cho. Flexible wideband UHF RFID tag antenna for curved metal surfaces. Electronics Letters. 2012;48(13):749–750. DOI: 10.1049/el.2012.1030
  • T. Björninen, L. Sydänheimo, L. Ukkonen, Y. Rahmat‐Samii. Advances in antenna designs for UHF RFID tags mountable on conductive items. IEEE Antennas and Propagation Magazine. 2014;56(1):79–103. DOI: 10.1109/MAP.2014.6821761
  • L. Catarinucci, R. Colella, M. D. Blasi, L. Patrono, Luigi, L. Tarricone. Experimental performance evaluation of passive UHF RFID tags in electromagnetically critical supply chains. Journal of Communications Software & Systems. 2011;7(2):59–70
  • M. Laniel, J.‐P. Émond. Mapping of RFID tag readability in relation to the food content in a refrigerated sea container at 915 MHz. Innovative Food Science & Emerging Technologies. 2010;11(4):703–706. DOI: 10.1016/j.ifset.2010.06.005
  • M. D. Blasi, V. Mighali, L. Patrono, M. L. Stefanizzi. Performance evaluation of UHF RFID tags in the pharmaceutical supply chain. In: D. Giusto, A. Lera, G. Morabito, L. Atzori, editors. The Internet of Things. Springer, New York, NY; 2010. p. 283–292. DOI: 10.1007/978‐1‐4419‐1674‐7_27
  • GS1. EPCglobal Class1‐Gen2 standard [Internet]. Available from: http://www.gs1.org/epcrfid/epc‐rfid‐uhf‐air‐interface‐protocol/2‐0‐1 [Accessed: July 12, 2016]
  • S. Kang, Z. Prodanoff. RFID model for simulating framed slotted ALOHA based anti‐collision protocol for multi‐tag identification. In: C. Turcu, editor. Current Trends and Challenges in RFID. InTech; DOI: 10.5772/16601
  • J. Vales‐Alonso, M. V. Bueno‐Delgado, E. Egea‐Lopez, J. J. Alcaraz‐Espin, F. J. Gonzalez‐Castaño. Multi‐frame maximum‐likelihood tag estimation for RFID anti‐collision protocols. IEEE Transactions on Industrial Informatics. 2011;7(3):487–495. DOI: 0.1109/TII.2011.2158831
  • N. Bagheri, P. Alenaby, M. Safkhani. A new anti‐collision protocol based on information of collided tags in RFID systems. International Journal of Communication Systems. 2015. DOI: 10.1002/dac.2975
  • D. Klair, K. ‐W. Chin, R. Raad. A survey and tutorial of RFID anti‐collision protocols. IEEE Communications Surveys & Tutorials. 2010;12(3):400–421. DOI: 10.1109/SURV.2010.031810.00037
  • T. F. La‐Porta, G. Maselli, C. Petrioli. Anti‐collision protocols for single‐reader RFID systems: Temporal analysis and optimization. IEEE Transactions on Mobile Computing. 2011;10(2):267–279. DOI: 10.1109/TMC.2010.58
  • ETSI. ETSI EN 302 208‐2 V2.1.1 [Internet]. Available from: http://www.etsi.org/deliver/etsi_en/302200_302299/30220802/02.01.01_60/en_30220802v020101p.pdf [Accessed: July 12, 2016]
  • FCC. part‐15 [Internet]. Available from: https://www.fcc.gov/general/rules‐regulations‐title‐47 [Accessed: July 12, 2016]
  • D.‐Y. Kim, J.‐G. Yook, H.‐G. Yoon, B.‐J. Jang. Interference analysis of UHF RFID systems. Progress in Electromagnetics Research B. 2008;4:115–126. DOI: 10.2528/PIERB08010607
  • M. V. Bueno‐Delgado, P. Pavon‐Marino. A maximum likelihood based distributed protocol for passive RFID dense reader environments. Journal of Supercomputing, Special Issue on Advances in Communication Networks for Pervasive and Ubiquitous Applications. 2013;64(2):456–476. DOI: 10.1007/s11227‐012‐0779‐5
  • M. V. Bueno‐Delgado, P. Pavon‐Marino. A centralized and aligned scheduler for passive RFID dense reader environments working under EPCglobal standard. Simulation Modelling Practice and Theory, Special Issue on Internet of Things. 2013;34:172–185. DOI: 10.1016/j.simpat.2012.07.006
  • M. V. Bueno‐Delgado, R. Ferrero, F. Gandino, P. Pavon‐Marino, M. Rebaudengo. A geometric distribution reader anti‐collision protocol for RFID dense reader environments. IEEE Transactions on Automation Science and Engineering. 2013;10(2):296–306. DOI: 10.1109/TASE.2012.2218101
  • K. R. Kashwan, T. Thirumalai. TDMA Based Collision Avoidance in Dense and Mobile RFID Reader Environment: DDFSA with RRE. In: Microelectronics, Electromagnetics and Telecommunications. Springer India; 2015. p. 497–505. DOI: 10.1007/978‐81‐322‐2728‐1_46
  • GS1. Object Name Server (ONS) [Internet]. Available from: http://www.gs1.org/epcis/epcis‐ons/latest [Accessed: July 12, 2016]
  • M. Lorenz, J. Müller, M. ‐P. Schapranow, A. Zeier, H. Plattner. Discovery Services in the EPC Network. In: C. Turcu, editor. Designing and Deploying RFID Applications. InTech; 2011. p. 109–130. DOI: 10.5772/16658
  • S. M. Kywe, J. Shi, Y. Li, R. Kailash. Evaluation of different electronic product code discovery service models. Advances in Internet of Things. 2012;2(2):37–46 . DOI: 10.4236/ait.2012.22005
  • P. Manzanares‐Lopez, J. P. Muñoz Gea, J. Malgosa‐Sanahuja, J. C. Sanchez‐Aarnoutse. An efficient distributed discovery service for EPCglobal network in nested package scenarios. Journal of Network and Computer Application. 2011;34(3):925–937. DOI: 10.1016/j.jnca.2010.04.018
  • A. Dahbi, H. T. Mouftah. A Hierarchical Architecture for Distributed EPCglobal Discovery Services. In: IEEE Global Communications Conference (GLOBECOM); December 6–10, 2015; San Diego, CA. IEEE; 2015. p. 1–7. DOI: 10.1109/GLOCOM.2015.7417836
  • S. H. Choi, B. Yang, H. H. Cheung, Y. X. Yang. RFID tag data processing in manufacturing for track‐and‐trace anti‐counterfeiting. Computers in Industry. 2015;68:148–161. DOI: 10.1016/j.compind.2015.01.004
  • J. Garcia‐Alfaro, J. Herrera‐Joancomarti, J. Melia‐Segui. Security and Privacy Concerns About the RFID Layer of EPC Gen2 Networks. In: G. Navarro‐Arribas, V. Torras, editors. Advanced Research in Data Privacy. Springer International Publishing Switzerland; 2015. p. 303–324. DOI: 10.1007/978‐3‐319‐09885‐2_17
  • B. R. Ray, J. Abawajy, M. Chowdhury. Scalable RFID security framework and protocol supporting Internet of things. Computer Networks. 2014;67:89–103. DOI: 10.1016/j.comnet.2014.03.023
  • S. Chang, L. Lu, X. Liu, H. Song, Q. Yao. Vulnerability aware graphs for RFID protocol security benchmarking. Journal of Computer and System Sciences. 2015;81(6):1027–1041. DOI: 10.1016/j.jcss.2014.12.015
  • ComptTIA RFID+ certification. Available from: http://certification.comptia.org [Accessed: July 12, 2016]