Evaluación del comportamiento de una sonda aire-agua en un banco de calibración de equipos de medición de flujos bifásicos

  1. Ros-Bernal, Alicia 1
  2. Carrillo, José M. 1
  3. García, Juan T. 1
  4. Castillo, Luis G. 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 2023

Volumen: 27

Número: 4

Páginas: 269-281

Tipo: Artículo

DOI: 10.4995/IA.2023.20038 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Resumen

A pesar de los avances significativos logrados en el estudio de los flujos bifásicos agua-aire, existen dudas acerca de la precisión de las campañas experimentales puesto que los equipos suelen obviar la fase de calibración. Las limitaciones inherentes a las técnicas de medición existentes han impulsado la presente investigación. El objetivo de este trabajo es profundizar en el conocimiento del funcionamiento de una sonda de fibra óptica de doble punta, ensayada en un banco de calibración con una fracción de vacío del 32.13%. Para alcanzar esta concentración se ha utilizado un caudal de agua Qw = 2.26 l/s y un caudal de aire Qa = 1.07 l/s. La evolución de las principales variables ha sido analizada en la dirección transversal del chorro, considerando diferentes secciones a distintas distancias respecto a la salida de la tobera. Estas variables incluyen: la fracción de vacío, la frecuencia de cambio de fase, la velocidad, y el diámetro medio de las burbujas de Sauter.

Referencias bibliográficas

  • Bachalo, W.D. 1994. Experimental methods in multiphase flows. International Journal of Multiphase Flow, 20, 261-295. https://doi.org/10.1016/0301-9322(94)90075-2
  • Bachmeier, G. 1988. Setup, calibration and use of a measuring probe for determination of air concentration in a spillway chute. Diploma dissertation, Institute for Hydromechanics of Karlsruhe University, Karlsruhe, Germany (translated from the German original by Duncan Anderson, USBR).
  • Boes, R.M., Hager, W.H. 1998. Fiber-optical experimentation in two-phase cascade flow. Proc. Int. RCC Dams Seminar, Ed. K. Hansen, Denver, EUA.
  • Borges, J.E., Pereira N., Matos J., Frizell K.W. 2010. Performance of a combined three hole conductivity probe for void fraction and velocity measurement in air–water flows. Experiments in Fluids, 48, 17-31. https://doi.org/10.1007/s00348-009-0699-1
  • Boyer, C., Duquenne, A.M., Wild, G. 2002. Measuring techniques in gas–liquid and gas–liquid–solid reactors, Chemical Engineering Science, 57, 3185-3215. https://doi.org/10.1016/S0009-2509(02)00193-8
  • Cain, P. 1978. Measurements within self-aerated flow on a large spillway, Res. Rep. No. 78-18, Univ. of Canterbury, Christchurch, New Zealand.
  • Cartellier, A., Achard, J.L. 1991. Local phase detection probes in fluid/fluid two-phase flows, Review of Scientific Instruments, 62, 279-303. https://doi.org/10.1063/1.1142117
  • Chanson, H. 2002. Air-Water Flow Measurement with Intrusive, Phase-Detection Probes: Can We Improve Their Interpretation?, Journal of Hydraulic Engineering, 128(3), 1-4. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(252)
  • Chanson, H. 2007. Dynamic similarity and scale effects affecting air bubble entrainment in hydraulic jumps. In: 6th Intl. Conf. Multiphase Flow, ICMF, Leipzig, Germany, 9–13, July 2007.
  • Chanson, H., 2016. Phase-detection measurements in free-surface turbulent shear flows. Journal of Geophysics and Engineering, 13, 74-87. https://doi.org/10.1088/1742-2132/13/2/S74
  • Felder, S., Chanson, H. 2015. Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters. Experimental Thermal and Fluid Science, 61, 66-78. https://doi.org/10.1016/j.expthermflusci.2014.10.009
  • Frizell, K.H., Ehler, D.G., Mefford, B.W. 1994. Developing air concentration and velocity probes for measuring in highly-aerated, high-velocity flow. Proc. Hyd. Engrg. Conf., ASCE, Buffalo, N.Y., pp. 268-277.
  • Hohermuth, B., Kramer, M., Felder, S., Valero, D. 2021. Velocity bias in intrusive gas-liquid flow measurements. Nature Communications, 12, 4123. https://doi.org/10.1038/s41467-021-24231-4
  • Kramer, M., Hohermuth, B., Valero, D., Felder, S. 2020. Best practices for velocity estimations in highly aerated flows with dual-tip phasedetection probes. International Journal of Multiphase Flow, 126, 103228. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103228
  • Kramer, M., Valero, D., Chanson, H., Bung, D.B. 2019. Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique. Experiments in Fluids, 60, 1-6. https://doi.org/10.1007/s00348-018-2650-9
  • Matos, J., Frizell, K.H. 1997. Air concentration measurements in highly turbulent aerated flow. Proc. 28th IAHR Congress. Theme D, Vol. 1, Ed. Sam S.Y. Wang and Torkild Carstens, San Francisco, USA, pp. 149-154.
  • Matos, J., Frizell, K.H., André, S., & Frizell, K.W. 2002. On the performance of velocity measurement techniques in air-water flows. In: Proceedings of hydraulic measurements and experimental methods 2002 conference, EWRI-ASCE/IAHR, Estes Park, Colorado, USA (CD-ROM). https://doi.org/10.1061/40655(2002)58
  • Nagash, B.W. (1994). Void fraction measurement techniques for gas-liquid bubbly flows in closed conduits: A literature review. Proc. Hyd. Engrg. Conf., ASCE, Buffalo, N.Y., pp. 278-288.
  • Ortega, P.R. 2021. Análisis de la lámina vertiente en el sobrevertido de presas de fábrica. Doctoral Thesis. Universidad Politécnica de Cartagena (in Spanish).
  • RBI Instrumentation et Mesure: User’s Guide, Two-Phase Flow equipment with ATL unit. Chemin du Vieux Chene -F-38240 Meylan, France, 2013.
  • Valero, D., Bung, D.B. 2018. Artificial neural networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe. Journal of Hydro-environment Research, 19, 150-159. https://doi.org/10.1016/j.jher.2017.08.004