Design and Structural Analysis of a Prothesis for an Arthroplasty. Definition of the Osseointegration Grade During the Rehabilitation Process

  1. Cavas-Martínez, F. 1
  2. Parras-Burgos, D. 1
  3. Nieto, J. 1
  4. Cañavate, F. J. F. 1
  5. Fernández-Pacheco, D. G. 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Libro:
Project Management and Engineering Research

ISSN: 2198-0772 2198-0780

ISBN: 978-3-319-92272-0 978-3-319-92273-7

Año de publicación: 2018

Páginas: 111-125

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-319-92273-7_8 GOOGLE SCHOLAR

Resumen

One of the main issues that shoulder arthroplasty presents during the execution of rehabilitation exercises is its mechanical stability. In the particular case of the prosthesis-humerus set, a structural analysis of the set is necessary with the aim of defining the osseointegration grade in the different regions, considering the influence of the stress level which will be applied during the rehabilitation process, thus preventing bio-integration problems. The present communication aims to obtain the geometric model of a set by using CAD technologies and its posterior structural analysis by means of finite element analysis under the action of various load conditions. The prosthesis-humerus generated model becomes very useful for the orthopedic physician because it allows defining and programming the different stresses to apply during the rehabilitation process according to the osseointegration grade existing in the set region, thus preventing and minimizing the possible complications that could be derived by such process.

Referencias bibliográficas

  • Barlow BT, Boles JW, Lee YY, Ortiz PA, Westrich GH (2016) Short-term outcomes and complications after rejuvenate modular total hip arthroplasty revision. J Arthroplast 31(4):857–862. https://doi.org/10.1016/j.arth.2015.10.041
  • Baumgartner D, Lorenzetti SR, Mathys R, Gasser B, Stussi E (2009) Refixation stability in shoulder hemiarthroplasty in case of four-part proximal humeral fracture. Med Biol Eng Compu 47(5):515–522. https://doi.org/10.1007/s11517-009-0483-7
  • Budge MD, Kurdziel MD, Baker KC, Wiater JM (2013) A biomechanical analysis of initial fixation options for porous-tantalum-backed glenoid components. J Shoulder Elbow Surg 22(5):709–715. https://doi.org/10.1016/j.jse.2012.07.001
  • Cavas-Martínez F, Cañavate FJF, Nieto J, Fernández-Pacheco DG (2015) Diseño geométrico y simulación de funcionalidad de una prótesis de cadera en el sistema musculo-esquelético del cuerpo humano. In: 19th International Congress on project management and engineering (AEIPRO 2015), Granada, España, 2015. Asociación Española de Dirección e Ingeniería de Proyectos, pp 1061–1070
  • Cisneros LGN, Atoun E, Abraham R, Tsvieli O, Bruguera J, Levy O (2016) Revision shoulder arthroplasty: does the stem really matter? J Shoulder Elbow Surg 25(5):747–755. https://doi.org/10.1016/j.jse.2015.10.007
  • Ferrara F, Cipriani A, Rapisarda S, Iacobucci M, Magarelli N, Leone A, Bonomo L (2016) Assessment of implant position after total knee arthroplasty by dual-energy computed tomography. Acta radiologica (Stockholm, Sweden: 1987) 57 (5):612–619. https://doi.org/10.1177/0284185115595656
  • Foruria AM, Antuña S, Rodríguez-Merchán EC (2008) Prótesis parcial de hombro: revisión de conceptos básicos. Revista Española de Cirugía Ortopédica y Traumatología 52(06):392–402
  • Haaker R (2016) Evolution of total knee arthroplasty. From robotics and navigation to patient-specific instruments. Orthopade 45 (4):280±. https://doi.org/10.1007/s00132-016-3238-9
  • Hopkins AR, Hansen UN, Amis AA, Taylor M, Gronau N, Anglin C (2006) Finite element modelling of glenohumeral kinematics following total shoulder arthroplasty. J Biomech 39(13):2476–2483. https://doi.org/10.1016/j.jbiomech.2005.07.031
  • Liem D, Marquardt B, Witt KA, Steinbeck J (2007) Shoulder arthroplasty - biomechanics and design. Orthopade 36(11):1027±. https://doi.org/10.1007/s00132-007-1156-6
  • Oosting E, Hoogeboom TJ, Appelman-de Vries SA, Swets A, Dronkers JJ, van Meeteren NLU (2016) Preoperative prediction of inpatient recovery of function after total hip arthroplasty using performance-based tests: a prospective cohort study. Disabil Rehabil 38(13):1243–1249. https://doi.org/10.3109/09638288.2015.1076074
  • Pokines J, Symes SA (2013) Manual of forensic taphonomy. CRC Press
  • Rodríguez-Piñero Durán M, Rodríguez-Burgos C, Cárdenas-Clemente J, Echevarría-Ruiz de Vargas C (2007) Artroplastia de hombro. Rehabilitación 41(06):248–257
  • Serrano Reche MA, Chumillas Luján MS, Navarro Collado MJ, Moreno Barragán DA, Morales Suárez-Varela M (2010) Valoración funcional y calidad de vida en pacientes con prótesis de hombro. Rehabilitación 44(3):250–255. https://doi.org/10.1016/j.rh.2009.10.005
  • Suárez DR, Valstar ER, van der Linden JC, van Keulen F, Rozing PM (2009) Effect of rotator cuff dysfunction on the initial mechanical stability of cementless glenoid components. Med Biol Eng Compu 47(5):507–514. https://doi.org/10.1007/s11517-009-0475-7
  • Tibesku CO (2016) Total knee arthroplasty with the use of patient specific instruments. The VISIONAIRE system. Orthopade 45(4):286–293. https://doi.org/10.1007/s00132-016-3239-8
  • Wu X, He BX, Tan YJ (2016) Progress on classification and application of artificial hip joint materials. Zhongguo gu shang = China J Orthop Traumatol 29
  • Yang CC, Lu CL, Wu CH, Wu JJ, Huang TL, Chen R, Yeh MK (2013) Stress analysis of glenoid component in design of reverse shoulder prosthesis using finite element method. J Shoulder Elbow Surg/Am Shoulder Elbow Surg [et al] 22(7):932–939. https://doi.org/10.1016/j.jse.2012.09.001