A Graph-Based Approach for Modelling Quantum Circuits

  1. Alonso, Diego 1
  2. Sánchez, Pedro 1
  3. Álvarez, Bárbara 1
  1. 1 Department of Information and Communication Technologies, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
Revista:
Applied Sciences

ISSN: 2076-3417

Año de publicación: 2023

Volumen: 13

Número: 21

Páginas: 11794

Tipo: Artículo

DOI: 10.3390/APP132111794 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Applied Sciences

Objetivos de desarrollo sostenible

Resumen

A crucial task for the systematic application of model-driven engineering techniques in the development of quantum software is the definition of metamodels, as a first step towards automatic code generation and integration with other tools. The importance is even greater when considering recent work where the first extensions to UML for modelling quantum circuits are emerging and the characterisation of these extensions in terms of their suitability for a model-driven approach becomes unavoidable. After reviewing the related work, this article proposes a unified metamodel for modelling quantum circuits, together with five strategies for its use and some examples of its application. The article also provides a set of constraints for using the identified strategies, a set of procedures for transforming the models between the strategies, and an analysis of the suitability of each strategy for performing common tasks in a model-driven quantum software development environment. All of these resources will enable the quantum software community to speak the same language and use the same set of abstractions, which are key to furthering the development of tools to be built as part of future model-driven quantum software development frameworks.Keywords: modelling language; metamodel; quantum computing; model-driven engineering; unitary circuit model; quantum software

Referencias bibliográficas

  • Benioff, (1980), J. Stat. Phys., 22, pp. 563, 10.1007/BF01011339
  • Feynman, (1982), Int. J. Theor. Phys., 21, pp. 467, 10.1007/BF02650179
  • Shor, (1999), SIAM Rev., 41, pp. 303, 10.1137/S0036144598347011
  • Grover, L.K. (1996, January 22–24). A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, New York, NY, USA.
  • Piattini, (2021), IT Prof., 23, pp. 62, 10.1109/MITP.2020.3019522
  • Piattini, (2020), SIGSOFT Softw. Eng. Notes, 45, pp. 12, 10.1145/3402127.3402131
  • Nimbe, (2021), Quantum Inf. Process., 20, pp. 80, 10.1007/s11128-021-03021-3
  • Chi-Chih Yao, A. (1993, January 3–5). Quantum circuit complexity. Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, Palo Alto, CA, USA.
  • Alonso, (2022), Adv. Eng. Softw., 173, pp. 103216, 10.1016/j.advengsoft.2022.103216
  • (2005), Softw. Syst. Model., 4, pp. 171, 10.1007/s10270-005-0079-0
  • Atkinson, (2003), IEEE Softw., 20, pp. 36, 10.1109/MS.2003.1231149
  • Selic, (2003), IEEE Softw., 20, pp. 19, 10.1109/MS.2003.1231146
  • (2015), Comput. Lang. Syst. Struct., 43, pp. 139
  • Kahani, (2019), Softw. Syst. Model., 18, pp. 2361, 10.1007/s10270-018-0665-6
  • Sendall, (2003), IEEE Softw., 20, pp. 42, 10.1109/MS.2003.1231150
  • Sánchez, P., and Alonso, D. (2021). On the Definition of Quantum Programming Modules. Appl. Sci., 11.
  • Perez-Castillo, R., Jimenez-Navajas, L., and Piattini, M. (2021, January 1–2). Modelling Quantum Circuits with UML. Proceedings of the 2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), IEEE Computer Society, Madrid, Spain.
  • Pérez-Delgado, C.A., and Perez-Gonzalez, H.G. (2020, January 27). Towards a Quantum Software Modeling Language. Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, New York, NY, USA.
  • Ali, S., and Yue, T. (2020, January 13). Modeling Quantum Programs: Challenges, Initial Results, and Research Directions. Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software, New York, NY, USA.
  • Moin, A., Challenger, M., Badii, A., and Günnemann, S. (2022). INFORMATIK 2022, Gesellschaft für Informatik.
  • Piattini, (2022), Computing, 104, pp. 2375, 10.1007/s00607-022-01091-4
  • Pecorelli, (2022), J. Syst. Softw., 190, pp. 111326, 10.1016/j.jss.2022.111326
  • Killoran, (2019), Quantum, 3, pp. 129, 10.22331/q-2019-03-11-129
  • Pfister, (2019), J. Phys. B At. Mol. Opt. Phys., 53, pp. 012001, 10.1088/1361-6455/ab526f
  • Barenco, (1995), Phys. Rev. A, 52, pp. 3457, 10.1103/PhysRevA.52.3457
  • Penrose, R. (1971, January 7–10). Applications of negative dimensional tensors. Proceedings of the Conference on Combinatorial Mathematics and its Applications, Oxford, UK.
  • Giovannetti, (2008), Phys. Rev. Lett., 100, pp. 160501, 10.1103/PhysRevLett.100.160501
  • Arunachalam, (2015), New J. Phys., 17, pp. 123010, 10.1088/1367-2630/17/12/123010
  • Zidan, (2021), IEEE Access, 9, pp. 151775, 10.1109/ACCESS.2021.3119588
  • Johnston, E.R., Harrigan, N., and Gimeno-Segovia, M. (2019). Programming Quantum Computers: Essential Algorithms and Code Samples, O’Reilly Media.
  • Object Management Group, Inc. (2014). Object Constraint Language (OCL) v. 2.4, Object Management Group Headquarters. Available online: https://www.omg.org/spec/OCL.
  • Kolovos, (2008), Proceedings of the Theory and Practice of Model Transformations Conference, ICMT 2008, Volume 5063, pp. 46
  • Ma, H., Shao, W., Zhang, L., Ma, Z., and Jiang, Y. (2004, January 11–15). Applying OO Metrics to Assess UML Meta-models. Proceedings of the UML 2004—The Unified Modeling Language. Modeling Languages and Applications, Lisbon, Portugal.
  • Strahonja, V. (2007, January 25–28). The Evaluation Criteria of Workflow Metamodels. Proceedings of the 2007 29th International Conference on Information Technology Interfaces, Dubrovnik, Croatia.
  • Zhiyi, (2013), Fron. Comp. Sci., 7, pp. 558, 10.1007/s11704-013-1151-5
  • Treinish, M. (2021). Qiskit: An Open-Source Framework for Quantum Computing, Zenodo.
  • Object Management Group, Inc. (2016). Knowledge Discovery Metamodel (KDM) v. 1.4, Object Management Group Headquarters. Available online: https://www.omg.org/spec/KDM.
  • Abhijith, (2022), ACM Trans. Quantum Comput., 3, pp. 1, 10.1145/3517340
  • (2022), Quantum Inf. Process., 21, pp. 203, 10.1007/s11128-022-03546-1
  • McCaskey, (2018), SoftwareX, 7, pp. 245, 10.1016/j.softx.2018.07.007
  • Zidan, (2020), Mod. Phys. Lett. B, 34, pp. 2050401, 10.1142/S0217984920504011
  • Kitaev, (2003), Ann. Phys., 303, pp. 2, 10.1016/S0003-4916(02)00018-0
  • Santoro, (2006), J. Phys. A Math. Gen., 39, pp. R393, 10.1088/0305-4470/39/36/R01