Identification of Environmental Risk Areas Using Pollution Indexes and Geographic Information Systems

  1. Acosta, J. A. 1
  2. Gómez-López, M. D. 1
  3. Faz, A. 1
  4. Zornoza, R. 1
  5. Martínez-Martínez, S. 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Livre:
Lecture Notes in Management and Industrial Engineering

ISSN: 2198-0772 2198-0780

ISBN: 9783319922720 9783319922737

Année de publication: 2018

Pages: 159-170

Type: Chapitre d'ouvrage

DOI: 10.1007/978-3-319-92273-7_11 GOOGLE SCHOLAR

Objetivos de desarrollo sostenible

Résumé

The objective of this study was to demonstrate the usefulness of geographic information systems (GIS) and pollution indices to identify environmental risk areas affected by metals. The study area was located in the city of Murcia and its surroundings (SE Spain). The concentrations of Cr, Zn, Cu, Pb, Mn, Ni and Cd in 221 soil samples were determined, and five pollution indices calculated. After an analysis of each index and a comparison among them, the pollutant load index (PLI) was selected for the following reasons: (1) it provided a good spatial distribution of the areas of highest risk, (2) all metals contributed in a similar way to the index value, and (3) the index includes background concentrations in its calculation, which allowed to determine the level of metal enrichment. After selecting the index, GIS was used to create a spatial distribution map adjusting the parameters to obtain an adequate delimitation of the areas with the highest environmental risk. As a result, eight areas were identified. Therefore, the calculation of pollution indices and subsequent integration into a GIS is an appropriate and effective tool for rapid identification of environmental risk areas by presence of metals.

Références bibliographiques

  • Abollino O, Aceto M, Malandrina M, Mentaste E, Sarzanini C, Barberis R (2002) Distribution and mobility of heavy metals in contaminates sites. Chemometric investigation of pollutant profiles. Environ Pollut 119:177–193
  • Ahmed F, Ishiga H (2006) Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos Environ 40:3835–3844
  • Cabrera F, Clemente L, Díaz Barrientos E, López R, Murillo JM (1999) Heavy metal pollution of soil affected by the Guadiamar toxic flood. Sci Total Environ 242:117–129
  • Cabrera F, Medejón E, Burgos P, Girón I, Murillo JM (2005) Elementos traza en suelos y plantas del estero domingo rubio (margen izquierda del Río Tinto, Huelva). In: Jiménez R and Álvarez A.M., Control de la degradación de suelos. Univ. Autónoma de Madrid, Madrid, Spain
  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra MP (2005) Assessing heavy metal contamination in Sado Estuary sediment: and index análisis approach. Ecol Indic 5:151–169
  • Chan LS, Davis AM, Yim WWS, Yeung CH (2001) Magnetic properties and heavy metal contents of contaminated seabed sediments of Penny´s bay, Hong Kong. Mar Pollut Bull 42:569–583
  • Chen T, Yuan-Ming Z, Mei L, Ze-Chun H, Hong-Tao W, Huang C, Ke-Ke F, Ke Y, Xiao W, Qin-Zheng T (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chesmosphere 10:154–164
  • Chronopoulos J, Maidouti C, Chrnopoulos-Sereli A, Massas I (1997) Variations in plant and soil lead and cadmium content in urban park in Athens, Greece. Sci Total Environ 196:91–98
  • Conesa HM, Moradia AB, Robinson BH, Kühneb G, Lehmannb E, Schulin R (2009) Response of native grasses and Cicer arietinum to soil polluted with mining wastes: implications for the management of land adjacent to mine sites. Environ Exp Bot 65:198–204
  • Conesa HM, Robinson BH, Schulin R, Nowack B (2007) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707
  • De Miguel E, Jiménez de Grado J, Llamas JF, Martin-Dorado A, Mazadiego LF (1998) The overlooked contribution of compost application of the trace element load in the urban soil of Madrid (Spain). Sci Total Environ 215:113–122
  • Ferguson C, Kasamas H (1999) Risk assessment for contaminated sites in europe, vol 2. Policy Framework, LQM Press Ed., Nottingham
  • Feris K, Ramsey P, Frazar C, Moore J, Gannon J, Holben W (2003) Differences in hyporheic-zone microbial community structure along a heavy metal contamination gradient. Appl Environ Microb 69:5563–5573
  • Ferreira da Silva E, Cardoso E, Matos J, Patiha C, Reis P, Santos J (2005) The effect of unconfined mine mailing on the geochemistry of soils, sediments and surface water of the Lousal area (Iberian pyrite belt, Southern Portugal). Land Degrad Dev 16:213–228
  • Ferreira-Baptista L, De Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 38:4501–4512
  • Gäblere HE, Sschneider J (2000) Assessment of heavy metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environ Geol 39(7):774–782
  • Giusti L, Williamson AC, Mistry A (1999) Biologically available trace metals in Mytilus Edulis from the coast of Northeast England. Environ Int 25:969–981
  • Govil PK, Reddy GLN, Krishna AK (2001) Contamination of soil to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environ Geol 41:461–469
  • I.H.O.B.E. (1998) Investigación de la Contaminación del Suelo, Estudio Histórico y Diseño de Muestreo. Bilbao
  • Imperato M, Adamo P, Naimo D, Arienzo M, stanzione D, Violante P (2003) Spacial distribution of heavy metals in urban soils of Naples City (Italy). Environ Pollut 124:247–256
  • Madrid L, Díaz-Barrientos E, Madrid F (2002) Distribution of heavy metal contents of urban soils in parks of Seville. Chesmosphere 49:1301–1308
  • Navas A, Lindhorfer H (2003) Geochemical speciation of heavy metals in semiarid soils of the Central Ebro Valley (Spain). Environ Int 29:61–68
  • Ottenhof C, Faz A, Arocena J, Nierop K, Verstraten J, van Mourik J (2007) Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain). Chemosphere 69:1341–1350
  • Porta J, López M, Roquero C (1999) Edafología para la agricultura y el medio ambiente, 2º edn. Mundi Prensa, Madrid
  • Ramos TB, Caeiro S, Melo JJ (2002) Environmental indicator frameworks to design and assess environmental monitoring programs. Impact Assess. Project Appraisal J 22:46–62
  • Ramsey PW, Rilling MC, Feris KP, Moore JN, Gannon JE (2005) Mine waste contamination limits soil respiration rates: a case study using quantile regression. Soil Biol Biochem 37:1177–1183
  • Risser JA, Baker DE (1990) Testing soils for toxic metals. In Westerman RL (ed) Soil Testing and plant analysis. Soil Sci Soc Am Spec Publ 3. 3rd ed, Madison
  • Romic M, Romic D (2002) Heavy metals distribution in agricultural topsoils in urban area. Environ Geol 43:795–805
  • Salviagio D, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy Metals in urban soils: a case study in the city of Palermo (Sicily), Italia. Sci Total Environ 300:229–243
  • Usero J, Gonzálex-Regalado E, Gracia I (1996) Trace metals in bivalve mollusc Chamelea gallina from the Atlantic coast of Southern Spain. Mar Pollut Bull 32:305–310
  • Zanuzzi A, Arocena JM, van Mourik JM, Faz A (2009) Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma 154:69–75