A global-scale framework for hydropower development incorporating strict environmental constraints

  1. Xu, Rongrong
  2. Zeng, Zhenzhong
  3. Pan, Ming
  4. Ziegler, Alan D.
  5. Holden, Joseph
  6. Spracklen, Dominick V.
  7. Brown, Lee E.
  8. He, Xinyue
  9. Chen, Deliang
  10. Ye, Bin
  11. Xu, Haiwei
  12. Jerez, Sonia 1
  13. Zheng, Chunmiao
  14. Liu, Junguo
  15. Lin, Peirong
  16. Yang, Yuan
  17. Zou, Junyu
  18. Wang, Dashan
  19. Gu, Mingyi
  20. Yang, Zongliang
  21. Li, Dongfeng
  22. Huang, Junling
  23. Lakshmi, Venkataraman
  24. Wood, Eric. F.
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Nature Water

ISSN: 2731-6084

Ano de publicación: 2023

Volume: 1

Número: 1

Páxinas: 113-122

Tipo: Artigo

DOI: 10.1038/S44221-022-00004-1 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Nature Water

Información de financiamento

Financiadores

Referencias bibliográficas

  • Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38–50 (2019).
  • Hart, E. K. & Jacobson, M. The carbon abatement potential of high penetration intermittent renewables. Energy Environ. Sci. 5, 6592–6601 (2012).
  • Jacobson, M. et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ. Sci. https://doi.org/10.1039/D2EE00722C (2022).
  • Global Energy Review 2021 (International Energy Agency, 2021); https://www.iea.org/reports/global-energy-review-2021
  • Moran, E. et al. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).
  • Latrubesse, E. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).
  • Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).
  • Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
  • Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).
  • Fekete, B. et al. Millennium ecosystem assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochem. Cycles 24, GB0A12 (2010).
  • Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).
  • Gernaat, D. et al. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).
  • Hoes, O. C. et al. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 2, e0171844 (2017).
  • Ziv, G. et al. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2013).
  • Pastor, A. V. et al. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).
  • Jacobson, M. et al. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl Acad. Sci. USA 112, 15060–15065 (2015).
  • An Assessment of Energy Potential at Non-Powered Dams in the United States (US Department of Energy, 2021); https://www.energy.gov/eere/water/downloads/assessment-energy-potential-non-powered-dams-united-states
  • Kareiva, P. Dam choices: analyses for multiple needs. Proc. Natl Acad. Sci. USA 109, 5553–5554 (2012).
  • Poff, N. & Schmidt, J. How dams can go with the flow. Science 353, 1099–1100 (2016).
  • Poff, N. & Olden, J. Can dams be designed for sustainability? Science 358, 1252–1253 (2017).
  • Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).
  • OpenStreetMap (OSMF, 2021); www.openstreetmap.org
  • Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
  • Mulligan, M., Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).
  • Wang, J. et al. GeoDAR: georeferenced global dam and reservoir dataset for bridging attributes and geolocations. Earth Syst. Sci. Data 14, 1869–1899 (2022).
  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
  • Li, D. et al. High mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. https://doi.org/10.1038/s41561-022-00953-y (2022).
  • Cáceres, A. et al. Potential hydropower contribution to mitigate climate risk and build resilience in Africa. Nat. Clim. Change 12, 719–727 (2022).
  • Bertassoli, D. J. Jr et al. How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Sci. Adv. 7, eabe1470 (2021).
  • Millstein, D. et al. Solar and wind grid system value in the United States: the effect of transmission congestion, generation profiles, and curtailment. Joule 21, 1749–1775 (2021).
  • Rehman, S., Al-Hadhrami, L. M. & Alam, Md. M. Pumped hydro energy storage system: a technological review. Renew. Sustain. Energy Rev. 44, 586–598 (2015).
  • Stocks, M. et al. Global atlas of closed-loop pumped hydro energy storage. Joule 5, 270–281 (2021).
  • Hunt, J. et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat. Commun. 11, 947 (2020).
  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).
  • Tamba, J. et al. Carbon dioxide emissions from thermal power plants in Cameroon: a case study in Dibamba Power Development Company. Low Carbon Econ. 4, 35–40 (2013).
  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
  • Hwang, S., Cao, Y. & Xi, J. The short-term impact of involuntary migration in China’s Three Gorges: a prospective study. Social Indic. Res. 101, 73–92 (2011).
  • Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).
  • Schiermeier, Q. Europe is demolishing its dams to restore ecosystems. Nature 557, 290–291 (2018).
  • Sharma, S., Waldman, J., Afshari, S. & Fekete, B. Status, trends and significance of American hydropower in the changing energy landscape. Renew. Sustain. Energy Rev. 101, 112–122 (2019).
  • Arbuckle, E. et al. Insights for Canadian electricity generation planning from an integrated assessment model: should we be more cautious about hydropower cost overruns. Energy Policy 150, 112138 (2021).
  • Nazareno, A. & Lovejoy, T. Giant dam threatens Brazilian rainforest. Nature 478, 37 (2011).
  • Pritchard, H. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
  • Ran, L. & Lu, X. X. Cooperation is key to Asian hydropower. Nature 473, 452 (2011).
  • Hugonnet, R., McNabb, R. & Berthier, E. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
  • Farinotti, D., Pistocchi, A. & Huss, M. From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps? Environ. Res. Lett. 11, 054022 (2016).
  • Shukla, T. & Sen, I. Preparing for floods on the Third Pole. Science 372, 232–234 (2021).
  • Jacobson, M. et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1, 15–17 (2017).
  • Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).
  • Yamazaki, D., Ikeshima, D. & Sosa, J. MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).
  • Beck, H. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).
  • The World Database on Protected Areas (WDPA) (UNEP-WCMC, 2015)
  • KML Layer of Natural and Mixed World Heritage Sites as Recorded in the World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2013); https://www.arcgis.com/home/item.html?id=ef1ecce8fa3e41d89688be6199b5b32c
  • Lehner, B. & Dölla, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).
  • Turubanova, S., Potapov, P. & Tyukavina, A. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
  • Xu, J., Morris, P., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
  • LandScan 2019 Global Population Database (Oak Ridge National Laboratory, 2020); https://landscan.ornl.gov/
  • Fischer G. et al. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008) (IIASA, Laxenburg, Austria and FAO, 2008); https://pure.iiasa.ac.at/id/eprint/6182/1/IR-00-064.pdf
  • Shedlock, K. M., Giardini, D., Grunthal, G. & Zhang, P. The GSHAP Global Seismic Hazard Map. Seismol. Res. Lett. 71, 679–686 (2000).
  • Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
  • Farinotti, D. et al. Large hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).
  • Kummu, M., Taka, M. & Guillaume, J. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).
  • UK National Ecosystem Assessment Technical Report (UNEP-WCMC, 2011); http://uknea.unep-wcmc.org/
  • Land Values 2020 Summary (United States Department of Agriculture, 2020); https://www.nass.usda.gov/Publications/Todays_Reports/reports/land0820.pdf#:~:text=4%20Land%20Values%202020%20Summary%20%28August%202020%29%20USDA%2C,per%20acre%20for%202020%2C%20no%20change%20from%202019
  • Spawn, S., Sullivan, C., Lark, T. & Gibbs, H. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).
  • IUCN and CIESIN, Global Amphibian Richness Grids, 2015 Release (2013) (NASA and SEDAC, 2015); https://doi.org/10.7927/H4RR1W66
  • National Inventory of Dams (Federal Emergency Management Agency, 2022); https://www.fema.gov/emergency-managers/risk-management/dam-safety/national-inventory-dams