Balancing cleaner energy and geopolitical interests in the complex transition of the European electricity mix: from Fukushima to the Ukraine war

  1. Cataldi, Marcio
  2. de Las Nievez Espinosa Martínez, Maria
  3. Jerez, Sonia 1
  4. Montávez, Juan Pedro
  5. Da Silveira, Larissa Haringer Martins
  6. Dupont, Jairton
  7. Teixeira, Marcos Alexandre
  1. 1 Universidad de Murcia
    info

    Universidad de Murcia

    Murcia, España

    ROR https://ror.org/03p3aeb86

Revista:
Discover Energy

ISSN: 2730-7719

Año de publicación: 2024

Volumen: 4

Número: 1

Tipo: Artículo

DOI: 10.1007/S43937-024-00026-8 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Discover Energy

Referencias bibliográficas

  • Rahman S, Castro A. Environmental impacts of electricity generation: a global perspective. IEEE Trans Energy Convers. 1995;10(2):307–14. https://doi.org/10.1109/60.391897.
  • Laurent A, Espinosa N. Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: what can we learn for future energy planning? Energy Environ Sci. 2015;8:689. https://doi.org/10.1039/C9CE01771B.
  • Liu D, Guo X, Xiao B. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci Total Environ. 2019;661:750–66. https://doi.org/10.1016/j.scitotenv.2019.01.197.
  • Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J. Ecosystem services and carbon sequestration in the biosphere. Springer Dordrecht; 2013. p. 467. https://doi.org/10.1007/978-94-007-6455-2.
  • Almeida RM, Shi Q, Gomes-Selman JM, et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat Commun. 2019;10:4281. https://doi.org/10.1038/s41467-019-12179-5.
  • Howarth RW. A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng. 2014;2(2):47–60. https://doi.org/10.1002/ese3.35.
  • Jenner S, Lamadrid AJ. Natural gas vs. coal: policy implications from environmental impact comparisons of Natural gas, conventional gas, and coal on air, water, and land in the United States. Energy Policy. 2013;53:442–53. https://doi.org/10.1016/j.enpol.2012.11.010.
  • Balcombe P, Brandon NP, Hawkes AD. Characterising the distribution of methane and carbon dioxide emissions from the natural gas supply chain. J Clean Prod. 2018;172:2019–32. https://doi.org/10.1016/j.jclepro.2017.11.223.
  • Getirana A, Libonati R, Cataldi M. Brazil is in water crisis—it needs a drought plan. Nature. 2021; 600: 218–220. https://www.nature.com/articles/d41586-021-03625-w.
  • Kent ST, McClure LA, Zaitchik BF, Smith TT, Gohlke JM. Heat Waves and Health Outcomes in Alabama (USA): the importance of heat wave definition. Environ Health Perspect. 2014;122(2):151–8. https://doi.org/10.1289/ehp.1307262.
  • Amirkhani M, Ghaemimood S, von Schreeb J, El-Khatib Z, Yaya Z. Extreme weather events and death based on temperature and CO2 emission—a global retrospective study in 77 low-, middle- and high-income countries from, 1999 to 2018. Prevent Med Rep. 2022. https://doi.org/10.1016/j.pmedr.2022.101846.
  • Royé D, Codesido R, Tobías A, Taracido M. Heat wave intensity and daily mortality in four of the largest cities of Spain. Environ Res. 2020. https://doi.org/10.1016/j.envres.2019.109027.
  • Çulpan HC, Sahin Ü, Can G. A step to develop heat-health action plan: assessing heat waves’ impacts on mortality. Atmosphere. 2022;13:2126. https://doi.org/10.3390/atmos13122126.
  • Gazol A, Camarero JJ. Compound climate events increase tree drought mortality across European forests. Sci Total Environ. 2022. https://doi.org/10.1016/j.scitotenv.2021.151604.
  • Chen M, Cataldi M, Francisco CN. Application of hydrological modeling related to the 2011 disaster in the mountainous region of Rio De Janeiro, Brazil. Climate. 2023;11:55.
  • Burgherr P, Hirschberg S. Comparative risk assessment of severe accidents in the energy sector. Energy Policy. 2014;74(Supplement):1. https://doi.org/10.1016/j.enpol.2014.01.035.
  • Burgherr P, Giroux J, Spada M. Accidents in the energy sector and energy infrastructure attacks in the context of energy security. Eur J Risk Regul. 2015;6(2):271–83. https://doi.org/10.1017/S1867299X00004578.
  • Sovacool BK, Kryman M, Laine E. Profiling technological failure and disaster in the energy sector: a comparative analysis of historical energy accidents. Energy. 2015. https://doi.org/10.1016/j.energy.2015.07.043.
  • Mignan A, Spada M, Burgherr P, Wang Z, Sornette D. Dynamics of severe accidents in the oil & gas energy sector derived from the authoritative energy-related severe accident database. PLoS ONE. 2022. https://doi.org/10.1371/journal.pone.0263962.
  • Aitken C, Ersoy E. War in Ukraine: the options for Europe’s energy supply. World Econ. 2022;46:887–96. https://doi.org/10.1111/twec.13354.
  • Osička J, Černoch F. European energy politics after Ukraine: the road ahead. Energy Res Soc Sci. 2022;91: 102757. https://doi.org/10.1016/j.erss.2022.102757.
  • Deng M, Leippold M, Wagner AF, Wang Q. Stock Prices and the Russia-Ukraine War: sanctions, energy and ESG, CEPR Discussion Paper No. DP17207, 2022. Available at SSRN: https://ssrn.com/abstract=4121382.
  • Sturm C. Between a rock and a hard place: European energy policy and complexity in the wake of the Ukraine war. J Ind Bus Econ. 2022;49:835–78. https://doi.org/10.1007/s40812-022-00233-1.
  • EU—European Union. Consolidated version of the Treaty on the Functioning of the European Union. Part Three—Union Policies and Internal Actions. Title—Energy, Article 194. Document 12016E194. OJ C 202, 7.6.2016, p. 134–135. Available at: http://data.europa.eu/eli/treaty/tfeu_2016/art_194/oj. Assessed at: 02 Apr 2023.
  • EU. Treaty of the European Union—consolidated version, 2020: https://eur-ex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12016E/TXT&from=EN, Accessed at: 25 may 2023.
  • Pepe JM. Geopolitcs and Energy Security in Europe—How do we move forward? Friedich-Ebert-Stiftung. CCCSJ | FES Just Climate, 21 pp, 2022. https://www.funcas.es/articulos/the-geopolitics-of-energy-in-europe-short-term-and-long-term-issues/.
  • EU. Council Directive 2003/96/EC of 27 October 2003 restructuring the Community framework for the taxation of energy products and electricity (Text with EEA relevance). Document 32003L0096. OJ L 283, 31.10.2003, p. 51–70. Available at: http://data.europa.eu/eli/dir/2003/96/oj. Assessed at: 02 Apr 2023.
  • EU. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance), Document 32009L0028, OJ L 140, 5.6.2009, p. 16–62. Available at: http://data.europa.eu/eli/dir/2009/28/oj. Assessed at 02 Apr 2023.
  • Maltby T. European Union energy policy integration: a case of European Commission policy entrepreneur ship and increasing supra nationalism. Energy Policy. 2013;55:435–44. https://doi.org/10.1016/j.enpol.2012.12.031.
  • Yenikeyff SM. Kazakhstan’s gas: export markets and export routes. Oxford Institute for Energy Studies, NG 25, 2008. Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2010/11/NG25-KazakhstansgasExportMarketsandExportRoutes-ShamilYenikeyeff-2008.pdf. Assessed at: 15 mar 2023.
  • EU. Regulation (EU) No 1227/2011 of the European Parliament and of the Council of 25 October 2011 on wholesale energy market integrity and transparency Text with EEA relevance. Document 52015DC0080. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0080. Assessed at: 13 Mai 2023.
  • EU. Regulation (EC) No 714/2009 of the European Parliament and of the Council of 13 July 2009 on conditions for access to the network for cross-border exchanges in electricity and repealing Regulation (EC) No 1228/2003 (Text with EEA relevance). Document 32009R0714. OJ L 211, 14.8.2009, p. 15–35. Available at: http://data.europa.eu/eli/reg/2009/714/oj. Assessed at 02 Apr 2023.
  • RWE—Rheinisch-Westfälisches Elektrizitätswerk. Elbehafen LNG SRU Terminal Brunsbüttel. Available at: https://www.rwe.com/en/research-and-development/project-plans/floating-lng-terminals/elbehafen-lng/. Assessed at 04 Apr 2023.
  • Hegland M. Data mining techniques. Acta Numer. 2001;10:313–55.
  • IEA, World Energy Outlook 2019. ISSN 2072-5302. Available at: https://iea.blob.core.windows.net/assets/98909c1b-aabc-4797-9926-35307b418cdb/WEO2019-free.pdf. Assessed at 20 June 2023.
  • IPCC, 2007: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University. Press, Cambridge, United Kingdom and New York, NY, USA.
  • Harvey AC. Shephard, N. 10 Structural time series models, Handbook of Statistics, Elsevier, 1993; 11: 261–302. https://doi.org/10.1016/S0169-7161(05)80045-8.
  • Rodgers JL, Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat. 1988;42(1):59–66. https://doi.org/10.1080/00031305.1988.10475524.
  • Saplioglu K, Kucukerdem TS, Senel FA. Determining rainwater harvesting storage capacity with particle swarm optimization. Water Resour Manage. 2019;33:4749–66. https://doi.org/10.1007/s11269-019-02389-3.
  • Kim Y, Kim M, Kim W. Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy. 2013;61:822–8. https://doi.org/10.1016/j.enpol.2013.06.107.
  • Hayashi M, Hughes L. The Fukushima nuclear accident and its effect on global energy security. Energy Policy. 2013;59:102–11. https://doi.org/10.1016/j.enpol.2012.11.046.
  • Buechler E, et al. Global changes in electricity consumption during COVID-19. iScience. 2022. https://doi.org/10.1016/j.isci.2021.103568.
  • Ruhnau O, Stiewe C, Muessel J, et al. Natural gas savings in Germany during the 2022 energy crisis. Nat Energy. 2023. https://doi.org/10.1038/s41560-023-01260-5.
  • Lan T, Sher G, Zhou J. The economic impacts on Germany of a potential Russian gas shutoff, IMF Working Papers, 2022(144), A001 (2022). https://doi.org/10.5089/9798400215285.001.
  • Fell H, Gilbert A, Jenkins JD, et al. Nuclear power and renewable energy are both associated with national decarbonization. Nat Energy. 2022;7:25–9. https://doi.org/10.1038/s41560-021-00964-w.
  • Pereira P, Bašić F, Bogunovic I, Barcelo D. Russian-Ukrainian war impacts the total environment. Sci Total Environ. 2022. https://doi.org/10.1016/j.scitotenv.2022.155865.
  • Toreti A, Bavera D, Acosta Navarro J, Cammalleri C, de Jager A, Di Ciollo C, Hrast Essenfelder A, Maetens W, Magni D, Masante D, Mazzeschi M, Niemeyer S, Spinoni J. Drought in Europe August 2022, Publications Office of the European Union, Luxembourg, 2022, https://doi.org/10.2760/264241, JRC130493.
  • Xu R, Zeng Z, Pan M, et al. A global-scale framework for hydropower development incorporating strict environmental constraints. Nat Water. 2023;1:113–22. https://doi.org/10.1038/s44221-022-00004-1.
  • Jerez S, Tobin I, Turco M, Jiménez-Guerrero P, Vautard R, Montávez JP. Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe. Renewable Energy. 2019;139:251–60. https://doi.org/10.1016/j.renene.2019.02.060.
  • Jerez S, Barriopedro D, García-López A, Lorente-Plazas R, Somoza AM, Turco M, et al. An action-oriented approach to make the most of the wind and solar power complementarity. Earth’s Future. 2023;11:e2022EF003332. https://doi.org/10.1029/2022EF003332.
  • Weschenfelder F, Leite GNP, Araújo da Costa AC, Vilela OC, Ribeiro CM, Ochoa AAV, Araújo AM. A review on the complementarity between grid-connected solar and wind power systems. J Cleaner Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.120617.
  • Schindler D, Behr HD, Jung C. On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Conversion Manag. 2020. https://doi.org/10.1016/j.enconman.2020.113016.
  • Impram S, Nese SV, Oral B. Challenges of renewable energy penetration on power system flexibility: a survey. Energy Strategy Rev. 2020. https://doi.org/10.1016/j.esr.2020.100539.
  • Al-Shetwi AQ, Hannan MA, Jern KP, Mansur M, Mahlia TMI. Grid-connected renewable energy sources: review of the recent integration requirements and control methods. J Cleaner Prod. 2020. https://doi.org/10.1016/j.jclepro.2019.119831.
  • Grams C, Beerli R, Pfenninger S, et al. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nature Clim Change. 2017;7:557–62. https://doi.org/10.1038/nclimate3338.
  • Wohland J, Brayshaw D, Pfenninger S. Mitigating a century of European renewable variability with transmission and informed siting. Environ Res Lett. 2021;16(6): 064026.
  • Zhang X, Myhrvold NP, Caldeira K. Key factors for assessing climate benefits of natural gas versus coal electricity generation. Environ Res Lett. 2014;9: 114022. https://doi.org/10.1088/1748-9326/9/11/114022.
  • Brehm P. Natural gas prices, electric generation investment, and greenhouse gas emissions. Resour Energy Econ. 2019;58: 101106. https://doi.org/10.1016/j.reseneeco.2019.06.003.
  • Weisser H. The security of gas supply—a critical issue for Europe? Energy Policy. 2007;35(1):1–5. https://doi.org/10.1016/j.enpol.2005.10.002.
  • Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ Sci Technol. 2012;46(2):619–27. https://doi.org/10.1021/es201942m.
  • Kemfert C, Präger F, Braunger I, et al. The expansion of natural gas infrastructure puts energy transitions at risk. Nat Energy. 2022;7:582–7. https://doi.org/10.1038/s41560-022-01060-3.
  • Lamb WF, et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett. 2021. https://doi.org/10.1088/1748-9326/abee4e.
  • Rosenzweig C, Karoly D, Vicarelli M, et al. Attributing physical and biological impacts to anthropogenic climate change. Nature. 2008;453:353–7. https://doi.org/10.1038/nature06937.
  • Ruddiman WF. The early anthropogenic hypothesis: challenges and responses. Rev Geophys. 2007;45:RG4001. https://doi.org/10.1029/2006RG000207.
  • Wittneben BBF. The impact of the Fukushima nuclear accident on European energy policy. Environ Sci Policy. 2012;15(1):1–3. https://doi.org/10.1016/j.envsci.2011.09.002.
  • Azam A, Rafiq M, Shafique M, Zhang H, Yuan J. Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: a multi-variate panel data analysis. Energy. 2021. https://doi.org/10.1016/j.energy.2020.119592.
  • Giampietro M, Bukkens SGF. Knowledge claims in European Union energy policies: unknown knowns and uncomfortable awareness. Energy Res Soc Sci. 2022;91: 102739. https://doi.org/10.1016/j.erss.2022.102739.
  • IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. (2022) https://doi.org/10.1017/9781009325844.
  • Cunha Rael R. Merkel’s mistakes in German foreign policy towards Russia. Conjuntura Austral. 2023;14(65):21–31. https://doi.org/10.22456/2178-8839.127738.
  • Siddi M. German foreign policy towards Russia in the aftermath of the Ukraine crisis: a new ostpolitik? Europe Asia Stud. 2016;68(4):665–77. https://doi.org/10.1080/09668136.2016.1173879.
  • Newnhan R. Germany and Russia since reunification: Continuity, change, and the role of leaders. German Politics and Society, 2017; 35(1): 42–62. https://go.gale.com/ps/i.do?id=GALE%7CA494743294&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=10450300&p=AONE&sw=w&userGroupName=anon%7Ed6666f79&aty=open+web+entry.
  • McWilliams B, Sgaravatti G, Tagliapietra S, Zachmann G. How would the European Union fare without Russian energy? Energy Policy. 2023;174: 113413. https://doi.org/10.1016/j.enpol.2022.113413.
  • EU. Commission, 2022. REPowerEU: Joint European Action for More Affordable, Secure and Sustainable Energy. EC, Strasbourg. COM (2022) 108 final. https://energy.ec.europa.eu/system/files/2022-03/REPowerEU_Communication_with_Annexes_EN.pdf.
  • IEA, Greenhouse Gas Emissions from Energy 2022—Database documentation, 2022. Available at: https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy. Assessed at 24 may 2023.
  • Howarth RW, Jacobson MZ. How green is blue hydrogen? Energy Sci Eng. 2021;9(10):1676–87. https://doi.org/10.1002/ese3.956.
  • Kayfeci M, Keçeba A, Bayat M. Hydrogen production. In Solar Hydrogen Production, Academic Press, pp 45–83, 2019.
  • Beswick RR, Oliveira AM, Yan Y. Does the green hydrogen economy have a water problem? ACS Energy Lett. 2021;6(9):3167–9. https://doi.org/10.1021/acsenergylett.1c01375.
  • Palmer G, Roberts A, Hoadley A, Dargaville R, Honnery D. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy Environ Sci. 2021;14(10):5113–31. https://doi.org/10.1039/d1ee01288f.
  • Assemblée Nationale. Les modes de production de l’ hydrogène, 2021. Available at: https://www.senat.fr/fileadmin/Fichiers/Images/opecst/quatre_pages/OPECST_2021_0032_note_Hydrogene.pdf. Assessed at: 02 Apr 2023.
  • Agrawal KK, Jain S, Jain AK, et al. Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. Int J Environ Sci Technol. 2014;11:1157–64. https://doi.org/10.1007/s13762-013-0420-z.
  • AghaKouchak A, Chiang F, Huning LS, et al. Climate extremes and compound hazards in a warming world. Annu Rev Earth Planet Sci. 2020;48(1):519–48. https://doi.org/10.1146/annurev-earth-071719-055228.
  • Turco M, Jerez S, Augusto S, et al. Climate drivers of the 2017 devastating fires in Portugal. Sci Rep. 2019;9:13886. https://doi.org/10.1038/s41598-019-50281-2.
  • Kron W, Löw P, Kundzewicz ZW. Changes in risk of extreme weather events in Europe. Environ Sci Policy. 2019;100:74–83. https://doi.org/10.1016/j.envsci.2019.06.007.
  • Weilnhammer V, Schmid J, Mittermeier I, et al. Extreme weather events in Europe and their health consequences—a systematic review. Int J Hyg Environ Health. 2021;233: 113688. https://doi.org/10.1016/j.ijheh.2021.113688.
  • Skrúcaný T, Kendra M, Stopka O, Milojevi S, Figlus T, Csiszár C. Impact of the electric mobility implementation on the greenhouse gases production in central European countries. Sustainability. 2019;11(18):4948. https://doi.org/10.3390/su11184948.
  • Burchart-Korol D, Jursova S, Folga S, Pustejovska P. Life cycle impact assessment of electric vehicle battery charging in European Union countries. J Cleaner Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.120476.
  • Tobin I, Greuell W, Jerez S, Ludwig F, Vautard R, van Vliet MT, Bréon FM. Vulnerabilities and resilience of European power generation to 1.5 C, 2 C and 3 C warming. Environ Res Lett. 2018;13(4):044024. https://doi.org/10.1088/1748-9326/aab211.
  • Šúri M, Huld TA, Dunlop ED, Ossenbrink HA. Potential of solar electricity generation in the European Union member states and candidate countries. Solarenergy. 2007;81(10):1295–305. https://doi.org/10.1016/j.solener.2006.12.007.
  • Ryberg DS, Caglayan DG, Schmitt S, Linßen J, Stolten D, Robinius M. The future of European onshore wind energy potential: detailed distribution and simulation of advanced turbine designs. Energy. 2019;182:1222–38. https://doi.org/10.1016/j.energy.2019.06.052.
  • Enevoldsen P, Permien FH, Bakhtaoui I, von Krauland AK, Jacobson MZ, Xydis G, Sovacool BK, Valentine SV, Luecht D, Oxley G. How much wind power potential does Europe have? Examining European wind power potential with an enhanced socio-technical atlas. Energy Policy. 2019. https://doi.org/10.1016/j.enpol.2019.06.064.
  • Pereira JWC, Cataldi M, Salcedo IL. Natural dye-sensitized solar cells: case study with tropical organic pigments. Environ Prog Sustain Energy. 2021;1:1–7. https://doi.org/10.1002/ep.13603.
  • Liadze I, Macchiarelli C, Mortimer-Lee P, Sanchez Juanino P. Economic costs of the Russia-Ukraine war. World Econ. 2023;46:874–86. https://doi.org/10.1111/twec.13336.
  • Guan Y, Yan J, Shan Y, et al. Burden of the global energy price crisis on households. Nat Energy. 2023;8:304–16. https://doi.org/10.1038/s41560-023-01209-8.