Soil Greenhouse Gas Emissions in Intercropped Systems Between Melon and Cowpea

  1. Mariano Marcos-Pérez 1
  2. Virginia Sánchez-Navarro 1
  3. Raúl Zornoza 1
  1. 1 Universidad de Cartagena, España
Zeitschrift:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Datum der Publikation: 2023

Ausgabe: 13

Nummer: 1

Art: Artikel

DOI: 10.3389/SJSS.2023.11368 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Spanish Journal of Soil Science: SJSS

Ziele für nachhaltige Entwicklung

Zusammenfassung

There is a need to assess alternative cropping systems for climate change mitigation. Hence, we aimed to evaluate if cowpea, a legume crop with high climate adaptability and active rhizodeposition, can reduce GHG emissions when intercropped with melon, if different intercropping patterns can affect these soil GHG emissions, and elucidate if GHG emissions are related by soil and crop properties. We compared a cowpea and melon monocultures with different melon-cowpea intercropping patterns during two crop cycles. The different melon-cowpea intercropping patterns were: row intercropping 1:1 (melon:cowpea), row intercropping 2:1 (melon:cowpea) and mixed intercropping (alternate melon/cowpea plants within the same row), receiving 30% less fertilizers than monocrops. Results showed that CO2 emission rates were higher in the row 2:1 and row 1:1 intercropping systems compared to mixed intercropping, melon monocrop and cowpea monocrop, with the lowest emissions, likely due to the highest density of both plant species, which may stimulate microbial communities. Soil N2O emission rates were not affected by crop diversification, with very low values. Soil CO2 and N2O emissions were not correlated with environmental factors, soil properties or crop yield and quality, suggesting that crop management and plant density and growth were the main factors controlling GHG emissions. When the GHG emissions were expressed on a crop production basis, the lowest values were observed in mixed intercropping, owing to higher crop production. However, the 1:1 and 2:1 cowpea intercropping systems, with the lowest overall crop production, showed higher values of GHG emissions per unit of product, compared to cowpea monocrop. Thus, intercropping systems, and mostly mixed intercropping, have the potential to contribute to sustainable agriculture by increasing land productivity, reducing the need for synthetic fertilizers and decreasing GHG emissions per unit of product. These results highlight the importance of considering both agricultural productivity and greenhouse gas emissions when designing and implementing intercropping systems.

Bibliographische Referenzen

  • Aldoshin, N., Mamatov, F., Ismailov, I., and Ergashov, G. (2020). Development of Combined Tillage Tool for Melon Cultivation. Eng. Rural. Dev. 19, 767–772. doi:10.22616/ERDev.2020.19.TF175
  • Álvaro Fuentes, J., Lóczy, D., Thiele-Bruhn, S., and Zornoza Belmonte, R. (2019). Handbook of Plant and Soil Analysis for Agricultural Systems. Spain: Universidad Politécnica de Cartagena.
  • Amorim, M. R., Mendes, L. W., Antunes, J. E. L., Oliveira, L. M. S., Melo, V. M. M., Oliveira, F. A. S., et al. (2022). Cowpea Nodules Host a Similar Bacterial Community Regardless of Soil Properties. Appl. Soil Ecol. 172, 104354. doi:10.1016/j.apsoil.2021.104354
  • Amours, J. D., Pelster, D. E., Gagn, G., Anne, J., Chantigny, M. H., Angers, D. A., et al. (2023). Combining Reduced Tillage and Green Manures Minimized N2O Emissions From Organic Cropping Systems in a Cool Humid Climate. Agric. Ecosyst. Environ. 341, 108205. doi:10.1016/j.agee.2022.108205
  • Baggs, E. M., Rees, R. M., Smith, K. A., and Vinten, A. J. A. (2000). Nitrous Oxide Emission From Soils After Incorporating Crop Residues. Soil use Manag. 16, 82–87. doi:10.1111/j.1475-2743.2000.tb00179.x
  • Bedoussac, L., Journet, E. P., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E. S., et al. (2015). Ecological Principles Underlying the Increase of Productivity Achieved by Cereal-Grain Legume Intercrops in Organic Farming. A Review. Agron. Sustain. Dev. 35, 911–935. doi:10.1007/s13593-014-0277-7
  • Boden, T. A., Marland, G., and Andres, R. J. (2009). “Global, Regional, and National Fossil-Fuel CO2 Emissions,” in Carbon dioxide Inf. Anal. Center, Oak ridge Natl. Lab. Oak Ridge, Tenn., USA: U.S. Department of Energy.
  • Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., et al. (2019). Scientists’ Warning to Humanity: Microorganisms and Climate Change. Nat. Rev. Microbiol. 17, 569–586. doi:10.1038/s41579-019-0222-5
  • Chen, W., Wang, Y., Zhao, Z., Cui, F., Gu, J., and Zheng, X. (2013). The Effect of Planting Density on Carbon Dioxide, Methane and Nitrous Oxide Emissions From a Cold Paddy Field in the Sanjiang Plain, Northeast China. Agric. Ecosyst. Environ. 178, 64–70. doi:10.1016/j.agee.2013.05.008
  • Cuartero, J., Pascual, J. A., Vivo, J.-M., Özbolat, O., Sánchez-Navarro, V., Weiss, J., et al. (2022a). Melon/Cowpea Intercropping Pattern Influenced the N and C Soil Cycling and the Abundance of Soil Rare Bacterial Taxa. Front. Microbiol. 13, 1004593. doi:10.3389/fmicb.2022.1004593
  • Cuartero, J., Pascual, J. A., Vivo, J. M., Özbolat, O., Sánchez-Navarro, V., Egea-Cortines, M., et al. (2022b). A First-Year Melon/Cowpea Intercropping System Improves Soil Nutrients and Changes the Soil Microbial Community. Agric. Ecosyst. Environ. 328, 107856. doi:10.1016/j.agee.2022.107856
  • Dilekoğlu, M. F., and Sakin, E. (2017). Effect of Temperature and Humidity in Soil Carbon Dioxide Emission. J. Anim. Plant Sci. 27, 1596–1603.
  • Duhamel, M., and Vandenkoornhuyse, P. (2013). Sustainable Agriculture: Possible Trajectories From Mutualistic Symbiosis and Plant Neodomestication. Trends Plant Sci. 18, 597–600. doi:10.1016/j.tplants.2013.08.010
  • Dutaur, L., and Verchot, L. V. (2007). A Global Inventory of the Soil CH4 Sink. Glob. Biogeochem. Cycles 21, 2734. doi:10.1029/2006GB002734
  • Fageria, N. K., Gheyi, H. R., and Moreira, A. (2011). Nutrient Bioavailability in Salt Affected Soils. J. Plant Nutr. 34, 945–962. doi:10.1080/01904167.2011.555578
  • FAO (2017). The Future of Food and Agriculture: Trends and Challenges. Rome, Italy: Food and Agriculture Organization. Annu Rep 296, 1–180.
  • Gilbert, N. (2012). One-Third of Our Greenhouse Gas Emissions Come From Agriculture. Nature 2012, 1–2. doi:10.1038/nature.2012.11708
  • Hijri, I., Sýkorová, Z., Oehl, F., Ineichen, K., Mäder, P., Wiemken, A., et al. (2006). Communities of Arbuscular Mycorrhizal Fungi in Arable Soils are Not Necessarily Low in Diversity. Mol. Ecol. 15, 2277–2289. doi:10.1111/j.1365-294X.2006.02921.x
  • Huang, J., Sui, P., Gao, W., and Chen, Y. (2019). Effects of Maize-Soybean Intercropping on Nitrous Oxide Emissions From a Silt Loam Soil in the North China Plain. Pedosphere 29, 764–772. doi:10.1016/S1002-0160(17)60389-8
  • Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Henrik, H. N., Alves, B. J. R., et al. (2012). Legumes for Mitigation of Climate Change and the Provision of Feedstock for Biofuels and Biorefineries. A Review. Agron. Sustain. Dev. 32, 329–364. doi:10.1007/s13593-011-0056-7
  • Jian-xiong, H., Yuan-quan, C., Peng, S. U. I., Sheng-wei, N. I. E., and Wang-sheng, G. A. O. (2014). Soil Nitrous Oxide Emissions Under Maize-Legume Intercropping System in the North China Plain. J. Integr. Agric. 13, 1363–1372. doi:10.1016/S2095-3119(13)60509-2
  • Jiao, H., Chen, Y., Lin, X., and Liu, R. (2011). Diversity of Arbuscular Mycorrhizal Fungi in Greenhouse Soils Continuously Planted to Watermelon in North China. Mycorrhiza 21, 681–688. doi:10.1007/s00572-011-0377-z
  • Li, L., Sun, J., Zhang, F., Guo, T., Bao, X., Smith, F. A., et al. (2006). Root Distribution and Interactions Between Intercropped Species. Oecologia 147, 280–290. doi:10.1007/s00442-005-0256-4
  • Li, N., Gao, D., Zhou, X., Chen, S., Li, C., and Wu, F. (2020). Intercropping With Potato-Onion Enhanced the Soil Microbial Diversity of Tomato. Microorganisms 8, 834–915. doi:10.3390/microorganisms8060834
  • Li, Y. L., Otieno, D., Owen, K., Zhang, Y., Tenhunen, J., and Rao, X. Q. (2008). Temporal Variability in Soil CO2 Emission in an Orchard Forest Ecosystem. Pedosphere 18, 273–283. doi:10.1016/S1002-0160(08)60017-X
  • Lüscher, A., Mueller-Harvey, I., Soussana, J. F., Rees, R. M., and Peyraud, J. L. (2014). Potential of Legume-Based Grassland-Livestock Systems in Europe: A Review. Grass Forage Sci. 69, 206–228. doi:10.1111/gfs.12124
  • Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., et al. (2021). Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 11, 343. doi:10.3390/agronomy11020343
  • Mao, L. L., Zhang, L. Z., Zhang, S. P., Evers, J. B., van der Werf, W., Wang, J. J., et al. (2015). Resource Use Efficiency, Ecological Intensification and Sustainability of Intercropping Systems. J. Integr. Agric. 14, 1542–1550. doi:10.1016/S2095-3119(15)61039-5
  • Marcos-Pérez, M., Sánchez-Navarro, V., and Zornoza, R. (2023). Intercropping Systems Between Broccoli and Fava Bean Can Enhance Overall Crop Production and Improve Soil Fertility. Sci. Hortic. Amst. 312, 111834. doi:10.1016/j.scienta.2023.111834
  • Murphy-Bokern, D., Stoddard, F. L., and Watson, C. A. (2017). Legumes in Cropping Systems. United Kingdom: CABI.
  • Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S. (2016). Greenhouse Gas Emissions From Soils—A Review. Chem. Erde 76, 327–352. doi:10.1016/j.chemer.2016.04.002
  • Panosso, A. R., Marques, J., Pereira, G. T., and La Scala, N. (2009). Spatial and Temporal Variability of Soil CO2 Emission in a Sugarcane Area Under Green and Slash-And-Burn Managements. Soil Tillage Res. 105, 275–282. doi:10.1016/j.still.2009.09.008
  • Paustian, K., Six, J., Elliott, E. T., and Hunt, H. W. (2000). Management Options for Reducing CO2 Emissions From Agricultural Soils. Biogeochemistry 48, 147–163. doi:10.1023/A:1006271331703
  • Rocci, K. S., Lavallee, J. M., Stewart, C. E., and Cotrufo, M. F. (2021). Soil Organic Carbon Response to Global Environmental Change Depends on its Distribution Between Mineral-Associated and Particulate Organic Matter: A Meta-Analysis. Sci. Total Environ. 793, 148569. doi:10.1016/j.scitotenv.2021.148569
  • Sánchez-Navarro, V., Martínez-Martínez, S., Acosta, J. A., Almagro, M., Martínez-Mena, M., Boix-Fayos, C., et al. (2023). Soil Greenhouse Gas Emissions and Crop Production With Implementation of Alley Cropping in a Mediterranean Citrus Orchard. Eur. J. Agron. 142, 126684. doi:10.1016/j.eja.2022.126684
  • Sánchez-Navarro, V., Shahrokh, V., Martínez-Martínez, S., Acosta, J. A., Almagro, M., Martínez-Mena, M., et al. (2022). Perennial Alley Cropping Contributes to Decrease Soil CO2 and N2O Emissions and Increase Soil Carbon Sequestration in a Mediterranean Almond Orchard. Sci. Total Environ. 845, 157225. doi:10.1016/j.scitotenv.2022.157225
  • Sánchez-Navarro, V., Zornoza, R., Faz, Á., and Fernández, J. A. (2019). Does the Use of Cowpea in Rotation With a Vegetable Crop Improve Soil Quality and Crop Yield and Quality? A Field Study in SE Spain. Eur. J. Agron. 107, 10–17. doi:10.1016/j.eja.2019.03.007
  • Senbayram, M., Wenthe, C., Lingner, A., Isselstein, J., Steinmann, H., Kaya, C., et al. (2015). Legume-Based Mixed Intercropping Systems May Lower Agricultural Born N2O Emissions. Energy. Sustain. Soc. 6, 2–9. doi:10.1186/s13705-015-0067-3
  • Steinweg, J. M., Dukes, J. S., and Wallenstein, M. D. (2012). Modeling the Effects of Temperature and Moisture on Soil Enzyme Activity: Linking Laboratory Assays to Continuous Field Data. Soil Biol. Biochem. 55, 85–92. doi:10.1016/j.soilbio.2012.06.015
  • Stuczynski, T. I., McCarty, G. W., and Siebielec, G. (2003). Response of Soil Microbiological Activities to Cadmium, Lead, and Zinc Salt Amendments. J. Environ. Qual. 32, 1346. doi:10.2134/jeq2003.1346
  • Tang, X., Zhang, Y., Jiang, J., Meng, X., Huang, Z., Wu, H., et al. (2021). Sugarcane/Peanut Intercropping System Improves Physicochemical Properties by Changing N and P Cycling and Organic Matter Turnover in Root Zone Soil. PeerJ 9, 108800–e10928. doi:10.7717/peerj.10880
  • Usyskin-Tonne, A., Hadar, Y., Yermiyahu, U., and Minz, D. (2021). Elevated CO2 and Nitrate Levels Increase Wheat Root-Associated Bacterial Abundance and Impact Rhizosphere Microbial Community Composition and Function. ISME J. 15, 1073–1084. doi:10.1038/s41396-020-00831-8
  • Vasconcelos, A. L. S., Cherubin, M. R., Cerri, C. E. P., Feigl, B. J., Borja Reis, A. F., and Siqueira-Neto, M. (2022). Sugarcane Residue and N-Fertilization Effects on Soil GHG Emissions in South-Central, Brazil. Biomass Bioenergy 158, 106342. doi:10.1016/j.biombioe.2022.106342
  • Wang, X., Chen, Y., Yang, K., Duan, F., Liu, P., Wang, Z., et al. (2021). Effects of Legume Intercropping and Nitrogen Input on Net Greenhouse Gas Balances, Intensity, Carbon Footprint and Crop Productivity in Sweet Maize Cropland in South China. J. Clean. Prod. 314, 127997. doi:10.1016/j.jclepro.2021.127997
  • Ward, S. E., Ostle, N. J., Oakley, S., Quirk, H., Henrys, P. A., and Bardgett, R. D. (2013). Warming Effects on Greenhouse Gas Fluxes in Peatlands are Modulated by Vegetation Composition. Ecol. Lett. 16, 1285–1293. doi:10.1111/ele.12167
  • WRB (2015). World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome, Italy: Food and Agriculture Organization.
  • Wu, H. S., Chen, S. Y., Li, J., Liu, D. Y., Zhou, J., Xu, Y., et al. (2017). An Approach to Mitigating Soil CO2 Emission by Biochemically Inhibiting Cellulolytic Microbial Populations Through Mediation via the Medicinal Herb Isatis Indigotica. Atmos. Environ. 158, 259–269. doi:10.1016/j.atmosenv.2017.03.046
  • Yerlikaya, B. A., Ömezli, S., and Aydoğan, N., 2020. Climate Change Forecasting and Modeling for the Year of 2050. in Environment, Climate, Plant and Vegetation Growth. Berlin, Germany: Springer, 109–122. doi:10.1007/978-3-030-49732-3_5
  • Zhang, M. M., Wang, N., Hu, Y. B., and Sun, G. Y. (2018). Changes in Soil Physicochemical Properties and Soil Bacterial Community in Mulberry (Morus Alba L)/Alfalfa (Medicago Sativa L) Intercropping System. Microbiologyopen 7, 005555–e611. doi:10.1002/mbo3.555
  • Zornoza, R., Acosta, J. A., Gabarrón, M., Gómez-Garrido, M., Sánchez-Navarro, V., Terrero, A., et al. (2018). Greenhouse Gas Emissions and Soil Organic Matter Dynamics in Woody Crop Orchards With Different Irrigation Regimes. Sci. Total Environ. 644, 1429–1438. doi:10.1016/j.scitotenv.2018.06.398