Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna

  1. Vidarsson, Freysteinn V. 2
  2. Zetterstrom, Oskar 2
  3. Algaba-Brazalez, Astrid 1
  4. Fonseca, Nelson J. G. 3
  5. Johansson, Martin 1
  6. Manholm, Lars 1
  7. Quevedo-Teruel, Oscar 2
  1. 1 Ericsson Research, Ericsson AB, Gothenburg, Sweden
  2. 2 Division of Electromagnetic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
  3. 3 Antenna and Sub-Millimetre Waves Section, European Space Agency, Noordwijk, AG, The Netherlands
Revista:
IEEE Transactions on Antennas and Propagation

ISSN: 0018-926X 1558-2221

Año de publicación: 2022

Volumen: 70

Número: 11

Páginas: 10327-10337

Tipo: Artículo

DOI: 10.1109/TAP.2022.3209266 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: IEEE Transactions on Antennas and Propagation

Resumen

Here, we propose a low-profile polarizing technique integrated in a parallel plate waveguide (PPW) configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50∘ . Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from a vertical linear polarization, which is the polarization of the transverse electromagnetic (TEM) mode supported in the lens, to a +45∘ linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. In addition, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the Ka -band was manufactured and tested, verifying the performance obtained in simulations.

Referencias bibliográficas

  • mahon, (2022), Parallel Plate Septum Polarizer for Low Profile Antenna Applications
  • bartolomei, (2019), Proc of the European Conf on Antennas and Propag (EuCAP), pp. 1
  • 10.1109/TAP.2018.2841414
  • 10.1109/LAWP.2021.3081655
  • 10.1109/TAP.2015.2509011
  • 10.1063/1.1721704
  • 10.1109/TAP.1973.1140486
  • (2021), Lightpole Site Slim—An Innovative Small Cell Solution
  • 10.1109/TAP.2020.3048494
  • 10.1109/TAP.2020.3008638
  • 10.1109/JSSC.2005.857420
  • 10.1109/TAP.2019.2924904
  • 10.1109/TAP.1958.1144548
  • 10.1002/j.1538-7305.1948.tb01331.x
  • 10.1109/TAP.1965.1138530
  • 10.1109/MCOM.2018.1700977
  • luneburg, (1944), Mathematical Theory of Optics, pp. 391
  • 10.1109/ACCESS.2020.2992653
  • 10.1109/T-AP.1953.27321
  • 10.1109/TAP.2012.2207047
  • 10.1109/LAWP.2012.2237372
  • horsley, (2014), Sci Rep, 4, pp. 4876, 10.1038/srep04876
  • 10.1109/OJAP.2021.3093622
  • 10.1364/OL.39.003551
  • wikström, (2020), Ever-present intelligent communication
  • 10.1109/MSP.2011.2178495
  • 10.1063/1.1698221
  • 10.1109/JPROC.2014.2299397
  • 10.1109/APS.2015.7304491
  • 10.1109/TAP.2017.2724640
  • osseiran, (2020), 5G wireless access An overview
  • tiezzi, (2013), Proc of the European Conf on Antennas and Propag (EuCAP), pp. 1605
  • 10.1561/2000000093
  • 10.1109/TAP.2017.2735459
  • 10.1103/PhysRevB.87.125137
  • 10.1109/TAP.2019.2905962
  • 10.1109/TAP.2020.2989868
  • tyc, (2013), J Opt, 15
  • 10.1109/TAP.2017.2717964
  • 10.1109/LAWP.2021.3060283
  • 10.3390/sym11040581
  • 10.1109/TAP.2020.2963948
  • 10.1109/TAP.2011.2109695
  • 10.1109/TAP.2018.2872766
  • 10.1109/TAP.1973.1140406
  • 10.1109/MCOM.001.2100545
  • 10.1063/1.3664774
  • 10.1049/mia2.12028