V-Band geodesic generalized luneburg lens antenna with high beam crossover gain

  1. Zetterstrom, O. 1
  2. Arnberg, P. 3
  3. Vidarsson, F. V. 1
  4. Algaba-Brazález, A. 2
  5. Manholm, L. 2
  6. Johansson, M. 2
  7. Quevedo-Teruel, O. 1
  1. 1 Division of Electromagnetic Engineering and Fusion Science, KTH Royal Institute of Technology, Stockholm, Sweden
  2. 2 Ericsson Research, Ericsson AB, Gothenburg, Sweden
  3. 3 Division of Microwave Engineering, SAAB, Stockholm, Sweden
Revue:
IEEE Transactions on Antennas and Propagation

ISSN: 0018-926X 1558-2221

Année de publication: 2023

Volumen: 71

Número: 9

Pages: 7591-7596

Type: Article

DOI: 10.1109/TAP.2023.3283138 GOOGLE SCHOLAR

D'autres publications dans: IEEE Transactions on Antennas and Propagation

Résumé

Quasi-optical beamformers provide attractive properties for antenna applications at millimeter-wave (mm-wave) frequencies. Antennas implemented with these beamformers have demonstrated wide-angle switching of directive beams, making them suitable as base station antennas for future communication networks. For these applications, it is essential to ensure a high beam crossover gain to provide a robust service to end users within the steering range. Here, we propose a geodesic generalized Luneburg lens antenna operating from 57 to 67 GHz that provides increased crossover gain compared to previously reported geodesic Luneburg lens antennas. The focal curve of the generalized Luneburg lens can be displaced from the beamformer, allowing for a higher angular resolution in the placement of the feed array along the focal curve. The lens is fed with 21 ridge waveguides with an angular separation of 5.1°, thus providing beam steering in a 102° range. The peak realized gain varies from 19 to 21 dBi throughout the steering and frequency ranges and the beam crossover gain is roughly 3 dB below the peak gain. The simulations are experimentally validated.

Références bibliographiques

  • 10.1109/TAP.2010.2052582
  • 10.1109/TAP.2022.3228690
  • luneburg, (1944), Mathematical Theory of Optics
  • 10.1109/LAWP.2022.3222172
  • 10.1109/TAP.2018.2872766
  • 10.1109/TMTT.2017.2764091
  • 10.1109/TAP.2017.2669726
  • 10.1109/TAP.2022.3217175
  • 10.1109/JRPROC.1952.274061
  • 10.1063/1.1698221
  • 10.1109/TAP.2018.2845548
  • 10.1109/MCOM.001.2100545
  • 10.1080/09205071.2012.721181
  • 10.1063/1.1721704
  • 10.1109/OJAP.2021.3093622
  • sellin, (2022), Ericsson Microwave Outlook
  • 10.1109/TAP.2020.2963948
  • 10.1109/TAP.2019.2927862
  • 10.1109/TAP.2022.3209266
  • 10.1109/TAP.1962.1137890
  • 10.1109/ITST.2009.5399379
  • 10.1109/TAP.2021.3090789
  • 10.1109/LAWP.2017.2664880
  • 10.1109/TAP.2021.3139093
  • 10.1109/ACCESS.2020.2990223
  • 10.1109/TAP.1962.1137917
  • 10.1109/TAP.2018.2877467
  • 10.1109/TAP.2015.2477520
  • 10.1063/1.1723441
  • 10.23919/EuCAP53622.2022.9769616
  • 10.1109/APS.1971.1150937
  • 10.1049/iet-map.2017.0005
  • 10.1109/TAP.2019.2924904
  • 10.1109/TAP.2019.2894336
  • 10.1109/TAP.2015.2479243
  • 10.1109/TAP.2011.2109695
  • 10.1109/TAP.2010.2096380
  • 10.1109/TAP.2008.927567