Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity

  1. Ziyad AlSharawi 1
  2. Jose S. Cánovas 2
  3. Sadok Kallel 3
  1. 1 American University of Sharjah & Universidad Politécnica de Cartagena
  2. 2 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

  3. 3 American University of Sharjah
    info

    American University of Sharjah

    Sarja, Emiratos Árabes Unidos

    ROR https://ror.org/001g2fj96

Zeitschrift:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Datum der Publikation: 2024

Ausgabe: 23

Nummer: 1

Art: Artikel

Andere Publikationen in: Qualitative theory of dynamical systems

Zusammenfassung

We consider k-dimensional discrete-time systems of the form in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on , compatible with the monotonicity of F, and then use it to embed the k-dimensional system into a 2k-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.

Bibliographische Referenzen

  • 1. Gouzé, J.-L., Hadeler, K.P.: Monotone flows and order intervals. Nonlinear World 1(1), 23–34 (1994)
  • 2. Smith, H.L.: The discrete dynamics of monotonically decomposable maps. J. Math. Biol. 53(4), 747– 758 (2006)
  • 3. Smith, H.L.: Global stability for mixed monotone systems. J. Differ. Equ. Appl. 14(10–11), 1159–1164 (2008)
  • 4. AlSharawi, Z.: Embedding and global stability in periodic 2-dimensional maps of mixed monotonicity. Chaos, Solitons Fractals 157(10), 111933 (2022)
  • 5. AlSharawi, Z., Kallel, Z.: Global stability in the Ricker model with delay and stocking. Preprint
  • 6. Schröder, J.: Fehlerabschätzung bei linearen Gleichungssystemen mit dem Brouwerschen Fixpunktsatz. Arch. Ration. Mech. Anal. 3, 28–44 (1959)
  • 7. Collatz, L.: Funktionalanalysis und numerische Mathematik, volume Band 120 of Die Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1964)
  • 8. El-Morshedy, H.A., Ruiz-Herrera, A.: Asymptotic convergence in delay differential equations arising in epidemiology and physiology. SIAM J. Appl. Math. 81(4), 1781–1798 (2021)
  • 9. Kulenovi´c, M.R.S., Merino, O.: A global attractivity result for maps with invariant boxes. Discrete Contin. Dyn. Syst. Ser. B 6(1), 97–110 (2006)
  • 10. Krause, U., Pituk, M.: Boundedness and stability for higher order difference equations. J. Differ. Equ. Appl. 10(4), 343–356 (2004)
  • 11. Al-Salman, A., AlSharawi, Z., Kallel, S.: Extension, embedding and global stability in two dimensional monotone maps. Discrete Contin. Dyn. Syst. Ser. B 25(11), 4257–4276 (2020)
  • 12. Kulenovi´c, M.R.S., Merino, O.: A global attractivity result for maps with invariant boxes. Discrete Contin. Dyn. Syst. Ser. B 6(1), 97–110 (2006)
  • 13. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11(5), 559–623 (1954)
  • 14. Jury, E.I.: On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems. IFAC Proc. 1(2), 142–153 (1963)
  • 15. Luís, R.: Linear stability conditions for a first order n-dimensional mapping. Qual. Theory Dyn. Syst. 20(1), 20 (2021)
  • 16. Camouzis, E., Ladas, G.: Dynamics of Third-order Rational Difference Equations with Open Problems and Conjectures. Advances in Discrete Mathematics and Applications, vol. 5. Chapman & Hall/CRC, Boca Raton, FL (2008)
  • 17. Koci´c, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications, vol. 256. Kluwer Academic Publishers Group, Dordrecht (1993)
  • 18. Kulenovi´c, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations. Chapman & Hall/CRC, Boca Raton, FL (2002)