Generación de maniobras suaves en el espacio 3D

  1. VANEGAS ZABALA, GLORIA ISABEL
Dirigida por:
  1. Vicent Girbés Juan Director/a
  2. Leopoldo Armesto Angel Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 06 de febrero de 2024

Tribunal:
  1. Antonio Guerrero González Presidente
  2. Eugenio Ivorra Martínez Secretario/a
  3. Rosario Aragues Vocal

Tipo: Tesis

Resumen

El desarrollo tecnológico en la creación de trayectorias que permitan navegación libre de colisiones de Vehículos Autónomos (AVs) ha sido un objetivo constante de estudio debido a su fuerte interés científico y tecnológico en las últimas tres décadas. Las diferentes clases de AVs, ya sean Vehículos Aéreos no Tripulados (UAVs), Vehículos Terrestres no Tripulados (UGVs) o Vehículos Submarinos no Tripulados (UUVs), fomentan el desarrollo e implementación de trayectorias en el espacio tridimensional (3D). Un grupo especial de tecnología UAV está caracterizado por su ala fija, lo cual destaca características particulares en los AVs, debido a las restricciones no-holonómicas (un sistema que se describe mediante un conjunto de parámetros sujetos a restricciones diferenciales que no permiten que un vehículo se mueva de forma instantánea en cualquier dirección). En este sentido, las trayectorias navegables para estos UAVs no deben ser construidas como un conjunto de líneas rectas y círculos como en la gran mayoría de planificadores basados en primitivas, ya que no se garantiza una continuidad en su curvatura. Por lo tanto, las trayectorias construidas para esta rama tecnológica deben ser resueltas considerando las diferentes restricciones de maniobrabilidad del UAV, además de criterios de continuidad de curvas (el problema de continuidad se refiere principalmente a la continuidad geométrica, en términos de continuidad tangencial o de curvatura), suavidad en las curvas (una curva es suave si sus derivadas son continuas en el intervalo definido) y la seguridad en el vuelo (el control de seguridad garantiza que una trayectoria suave esté suficientemente lejos de los obstáculos). Finalmente, la cinemática del movimiento de los vehículos es otro factor que debe ser considerado mientras se suavizan las trayectorias. El presente trabajo está enfocado en la creación de trayectorias navegables en el espacio 3D, para UAVs de características no-holonómicas. La principal dificultad al solventar este problema se debe a la movilidad de esta clase de UAVs, pues se ven obligados a avanzar sin la posibilidad de detenerse a través de trayectorias 3D, realizando curvas con curvaturas limitadas (una máxima capacidad de giro a una velocidad definida). En consecuencia, se han desarrollado las herramientas necesarias para proporcionar una completa caracterización de trayectorias óptimas (con un radio de giro limitado) para UAVs que se mueven en el espacio 3D a una velocidad constante. Esta tesis se centra en la generación de caminos con trayectorias navegables en el espacio Euclídeo 3D, que contenga curvas con curvatura continua, considerando de esta manera las restricciones cinemáticas de los UAVs. Por tal motivo el objetivo principal es el desarrollo de la matemática necesaria para definir curvas clotoides en el espacio tridimensional, de modo que puedan ser utilizadas como primitivas en la generación de trayectorias. Finalmente, culminado el desarrollo de esta herramienta básica, y en función de los obstáculos del entorno, se puede completar una planificación y replanificación activa de movimientos. Para complementar la investigación, la verificación de las herramientas de planificación de trayectorias y del sistema, se han realizado simulaciones con la ayuda del entorno de desarrollo integrado (IDE) Matlab. De la misma forma, se ha preparado una plataforma de simulación de vuelo, tomando las virtudes del simulador de vuelo FlightGear 2018, y el modelo dinámico del avión de ala fija con restricciones no-holonómicas (Kadett 2400 ). En cuanto a la generación de trayectorias 3D, se han desarrollado simulaciones off-line, donde las acciones de control que debe ejecutar el avión para que siga la trayectoria calculada son definidas por: acceleración, brusquedad de curvatura y brusquedad de torsión. Por último, el enfoque de revisión bibliográfica presente en este documento se ha centrado en trabajos realizados que buscan cumplir con las tareas de planificación.