José Manuel
Cano Izquierdo
Profesor Titular de Universidad
Julio José
Ibarrola Lacalle
Profesor Titular de Universidad
Publicaciones en las que colabora con Julio José Ibarrola Lacalle (13)
2023
-
Applying deep learning in brain computer interface to classify motor imagery
Journal of Intelligent and Fuzzy Systems, Vol. 45, Núm. 5, pp. 8747-8760
2016
-
Are low cost Brain Computer Interface headsets ready for motor imagery applications?
Expert Systems with Applications, Vol. 49, pp. 136-144
-
Voting Strategy to Enhance Multimodel EEG-Based Classifier Systems for Motor Imagery BCI
IEEE Systems Journal, Vol. 10, Núm. 3, pp. 1082-1088
2015
-
Feature selection applying statistical and neurofuzzy methods to EEG-based BCI
Computational Intelligence and Neuroscience, Vol. 2015
2014
-
Tuning rules for a quick start up in Dynamic Matrix Control
ISA Transactions, Vol. 53, Núm. 2, pp. 612-627
2013
-
How well Fuzzy ARTMAP approximates functions?
Journal of Intelligent and Fuzzy Systems, Vol. 25, Núm. 2, pp. 335-350
2012
-
Control loop performance assessment with a dynamic neuro-fuzzy model (dFasArt)
IEEE Transactions on Automation Science and Engineering, Vol. 9, Núm. 2, pp. 377-389
-
Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 20, Núm. 1, pp. 2-7
2010
-
Applying neuro-fuzzy model dFasArt in control systems
Engineering Applications of Artificial Intelligence, Vol. 23, Núm. 7, pp. 1053-1063
2009
-
dFasArt: Dynamic neural processing in FasArt model
Neural Networks, Vol. 22, Núm. 4, pp. 479-487
2008
-
dNSP: A biologically inspired dynamic Neural network approach to Signal Processing
Neural Networks, Vol. 21, Núm. 7, pp. 1006-1019
2007
-
Performance monitoring of closed-loop controlled systems using dFasArt
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2006
-
A neurofuzzy scheme to on-line identification in an adaptive-predictive control
Neural Computing and Applications, Vol. 15, Núm. 1, pp. 41-48