On the global convergence of Chebyshev's iterative method
- Amat, S. 1
- Busquier, S. 1
- Gutiérrez, J.M. 2
- Hernández, M.A. 2
-
1
Universidad Politécnica de Cartagena
info
-
2
Universidad de La Rioja
info
ISSN: 0377-0427
Año de publicación: 2008
Volumen: 220
Número: 1-2
Páginas: 17-21
Tipo: Artículo
Otras publicaciones en: Journal of Computational and Applied Mathematics
Resumen
In [A. Melman, Geometry and convergence of Euler's and Halley's methods, SIAM Rev. 39(4) (1997) 728-735] the geometry and global convergence of Euler's and Halley's methods was studied. Now we complete Melman's paper by considering other classical third-order method: Chebyshev's method. By using the geometric interpretation of this method a global convergence theorem is performed. A comparison of the different hypothesis of convergence is also presented. © 2007 Elsevier B.V. All rights reserved.