On the Periodic Solutions Emerging from the Equilibria of the Hill Lunar Problem with Oblateness

  1. de Bustos, M Teresa 1
  2. López, Miguel A 2
  3. Martínez, Raquel 2
  4. Vera, Juan A 3
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

  3. 3 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Año de publicación: 2018

Volumen: 17

Número: 2

Páginas: 331-344

Tipo: Artículo

DOI: 10.1007/S12346-017-0233-4 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Qualitative theory of dynamical systems

Objetivos de desarrollo sostenible

Resumen

In this paper, using the averaging theory of first order, we obtain sufficient conditions for computing periodic solutions in the 3D Hill problem with oblateness.

Información de financiación

Acknowledgements This work has been partially supported by MINECO Grant Number MTM2014-51891-P, Fundación Séneca de la Región de Murcia Grant Number 19219/PI/14 and FEDER OP2014-2020 of Castilla-La Mancha Grant Number GI20163581.

Referencias bibliográficas

  • 1. Abouelmagd, E.I., Guirao, J.L.G.: On the perturbed restricted three-body problem. Appl. Math. Nonlinear Sci. 1(1), 123–144 (2016)
  • 2. Buica, A., Francoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)
  • 3. Buica, A., García, I.: Periodic solutions of some perturbed symmetric Euler top. Topol. Methods Nonlinear Anal. 36, 91–100 (2010)
  • 4. de Bustos, M.T., Guirao, J.L.G., Vera, J.A., Vigo-Aguilar, J.: Periodic orbits and C1-integrability in the planar Stark–Zeeman problem. J. Math. Phys. 53, 082701 (2012)
  • 5. de Bustos, M.T., Guirao, J.L.G., Vera, J.A.: The spatial Hill Lunar problem: periodic solutions emerging from equilibria. Dyn. Syst., 1–14. doi:10.1080/14689367.2016.1227771
  • 6. Llibre, J., Rodrigues, A.: On the periodic orbits of Hamiltonian systems. J. Math. Phys. 51, 042704 (2010)
  • 7. Malkin, I.G.: Some problems of the theory of nonlinear oscillations. In: Gosudarstv. Izdat. Tehn.–Teor. Lit., Moscow (1956) (Russian)
  • 8. Markakis, M.P., Perdiou, A.E., Douskos, C.N.: The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families. Astrophys. Space Sci. 315, 297–306 (2008)
  • 9. Markellos, V.V., Roy, A.E., Perdios, E.A., Douskos, C.N.: A Hill problem with oblate primaries and effect of oblateness on Hill stability of orbits. Astrophys. Space Sci. 278, 295–304 (2001)
  • 10. Markellos, V.V., Roy, A.E., Velgakis, M.J., Kanavos, S.S.: A photogravitational Hill problem and radiation effects on Hill stability of orbits. Astrophys. Space Sci. 271, 293–301 (2000)
  • 11. Papadakis, K.E.: The planar Hill problem with oblate primary. Astrophys. Space Sci. 293(3), 271–287 (2004)
  • 12. Papadakis, K.E.: The planar photogravitational Hill problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 1809–1821 (2006)
  • 13. Perdiou, A.E., Markellos, V.V., Douskos, C.N.: The Hill problem with oblate secondary: numerical exploration. Earth Moon Planets 97, 127–145 (2005)
  • 14. Perdiou, A.E., Perdios, E.A., Kalantonis, V.S.: Periodic orbits of the Hill problem with radiation and oblateness. Astrophys. Space Sci. 342, 19–30 (2012)
  • 15. Pérez-Chavela, E., Tamayo, C.: Relative equilibria in the 4-vortex problem bifurcating from an equilateral triangle configuration. Appl. Math. Nonlinear Sci. 1(1), 301–310 (2016)
  • 16. Roseau, M.: Vibrations non linéaires et théorie de la stabilité. In: Springer Tracts in Natural Philosophy, vol. 8. Springer, Berlin, New York (1966) (French)