Conceptual Process Design to Produce Bio-Acrylic Acid via Gas Phase Dehydration of Lactic Acid Produced from Carob Pod Extracts

  1. Ortiz Martínez, Víctor M. 1
  2. Saavedra, María I. 1
  3. Salar García, María J. 1
  4. Godínez, Carlos 1
  5. Lozano-Blanco, Luis J. 1
  6. Sanchez-Segado, Sergio 1
  1. 1 Universidad Politécnica de Cartagena
    info

    Universidad Politécnica de Cartagena

    Cartagena, España

    ROR https://ror.org/02k5kx966

Revista:
Processes

ISSN: 2227-9717

Año de publicación: 2023

Volumen: 11

Número: 2

Páginas: 457

Tipo: Artículo

DOI: 10.3390/PR11020457 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Processes

Resumen

This work discusses the conceptual process design for the integrated production of bio-based acrylic acid from carob pod aqueous extracts. CHEMCAD was used for the process simulation and cost estimation of the relevant equipment. The process was designed for a capacity of 68 kt of carob pod per year, operating 8000 h annually, and involving extraction, fermentation, catalytic dehydration, and distillation to achieve 99.98%w/w acrylic acid as the main product. The economic assessment for the base case suggests a fixed capital investment of EUR 62.7 MM with an internal rate of return of 15.8%. The results obtained show that carob pod is a promising biomass source for the production of bio-acrylic acid.

Información de financiación

Referencias bibliográficas

  • Laibach, (2020), J. Clean. Prod., 266, pp. 121939, 10.1016/j.jclepro.2020.121939
  • Esteban, (2019), J. Clean. Prod., 224, pp. 107, 10.1016/j.jclepro.2019.03.168
  • Stegmann, (2020), Resour. Conserv. Recycl. X, 6, pp. 100029
  • Mahtout, R., Ortiz-Martínez, V., Salar-García, M., Gracia, I., Hernández-Fernández, F., Pérez de los Ríos, A., Zaidia, F., Sanchez-Segado, S., and Lozano-Blanco, L. (2018). Algerian Carob Tree Products: A Comprehensive Valorization Analysis and Future Prospects. Sustainability, 10.
  • Yatmaz, (2018), Biocatal. Agric. Biotechnol., 16, pp. 200, 10.1016/j.bcab.2018.08.006
  • Becker, (2015), Curr. Opin. Biotechnol., 36, pp. 168, 10.1016/j.copbio.2015.08.022
  • Dusselier, (2013), Energy Environ. Sci., 6, pp. 1415, 10.1039/c3ee00069a
  • Bhagwat, (2021), ACS Sustain. Chem. Eng., 9, pp. 16659, 10.1021/acssuschemeng.1c05441
  • Dishisha, (2015), Microb. Cell. Fact., 14, pp. 200, 10.1186/s12934-015-0388-0
  • Kildegaard, (2015), Metab. Eng. Commun., 2, pp. 132, 10.1016/j.meteno.2015.10.001
  • Cheng, (2016), Bioresour. Technol., 200, pp. 897, 10.1016/j.biortech.2015.10.107
  • Bonnotte, (2018), ChemBioEng Rev., 5, pp. 34, 10.1002/cben.201700012
  • Yan, (2020), Ind. Eng. Chem. Res., 59, pp. 17417, 10.1021/acs.iecr.0c02148
  • Czekaj, (2022), Catal. Today, 387, pp. 172, 10.1016/j.cattod.2021.10.021
  • Lozano, (2010), Appl. Energy, 87, pp. 3417, 10.1016/j.apenergy.2010.06.004
  • Lozano, (2012), Bioresour. Technol., 104, pp. 324, 10.1016/j.biortech.2011.10.046
  • Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., and Worley, M. (2011). Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, National Renewable Energy Laboratory.
  • Ayaz, (2009), Plant Foods Hum. Nutr., 64, pp. 286, 10.1007/s11130-009-0130-3
  • American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (2006). 2006 ASHRAE Handbook: Refrigeration, ASHRAE.
  • Bowski, (1971), Biotechnol. Bioeng., 13, pp. 641, 10.1002/bit.260130505
  • Pot, B., Felis, G.E., De Bruyne, K., Tsakalidou, E., Papadimitriou, K., Leisner, J., and Vandamme, P. (2014). Lactic Acid Bacteria, John Wiley & Sons, Ltd.
  • Shuler, M.L., and Fikret, K. (2002). Bioprocess Engineering: Basic Concepts, Prentice Hall. [2nd ed.].
  • Turhan, (2010), Food Biotechnol., 24, pp. 364, 10.1080/08905436.2010.524485
  • Song, (2020), Chem. Eng. Res. Des., 156, pp. 324, 10.1016/j.cherd.2020.01.036
  • Turton, R., Shaeiwitz, J.A., Bhattacharyya, D., and Whiting, W.B. (2018). Analysis, Synthesis, and Design of Chemical Processes, Pearson. [5th ed.].
  • Brown, T. (2007). Engineering, Economics and Economic Design for Process Engineers, CRC Press.
  • Garrett, D.E. (1989). Chemical Engineering Economics, Van Nostrand Reinhold.
  • (2022, September 07). Ministry of Industry. Orden ICT 778/2020, Bases Reguladoras de Concesión de Apoyo Financiero a la Inversión Industrial. Available online: https://www.boe.es/boe/dias/2020/08/07/pdfs/BOE-A-2020-9399.pdf/.
  • Estadística Agraria Regional, and Servicio de Asociacionismo Agrario y Estadísticas (2021). Precios En Origen, Comunidad Autónoma de la Región de Murcia.
  • (2022, September 15). ICIS Chemical Business. Available online: http://www.icis.com/chemicals/channel-info-chemicals-a-z/.
  • Okoro, O.V., Nie, L., Alimoradi, H., and Shavandi, A. (2022). Waste Apple Pomace Conversion to Acrylic Acid: Economic and Potential Environmental Impact Assessments. Fermentation, 8.
  • Mancini, (2022), Chem. Eng. Res. Des., 179, pp. 401, 10.1016/j.cherd.2022.01.040
  • Short, W., Packey, D.J., and Holt, T. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies, National Renewable Energy Laboratory.