Comparaciones estadísticas y elaboración de rankings de rendimiento de jugadores de baloncesto

  1. Jose Antonio Martínez García 1
  1. 1 Universidad Politécnica de Cartagena

    Universidad Politécnica de Cartagena

    Cartagena, España


Retos: nuevas tendencias en educación física, deporte y recreación

ISSN: 1579-1726 1988-2041

Year of publication: 2024

Issue: 55

Pages: 170-176

Type: Article

More publications in: Retos: nuevas tendencias en educación física, deporte y recreación


This research has proposed a method to perform rankings of basketball players based on normalized statistical metrics from the box-score. By considering the error of each estimate, taking the number of regular season games as a finite population, this method is much more robust and rigorous than simple comparisons of specific average values. Through the analysis of each match of the 2020/21 NBA regular season, the 72 matches of each of the 30 teams in the competition were recorded, obtaining 22989 different records, which in turn were linked to dozens of performance indicators in the match. The results show that, indeed, the method based on inferential statistics and development of rankings using normalized metrics provides advantages for making a much more rigorous comparison of player performance.

Bibliographic References

  • Abbas, N. M. (2019, agosto 13). NBA data analytics: Changing the game.
  • Arkes, J. & Martínez, J. A. (2011). Finally, Evidence for a Momentum Effect in the NBA. Journal of Quantitative Analysis in Sports, 7(3), 1–14.
  • Berri, D. J., & Bradbury, J. C. (2010). Working in the land of metricians. Journal of Sports Economics, 11(1), 29-47.
  • Berri, D. J., & Schmidt, M. B. (2010). Stumbling on wins: Two economists expose the pitfalls on the road to victory in professional sports. FT Press
  • Berri, D. J. (2012). Measuring performance in the National Basketball Association. InStephen Shmanske, S. and Kahane, L. (Eds): The Handbook of Sports Economics. Oxford University
  • Casals, M. & Martínez, J. A. (2013). Modelling player performance in basketball through mixed models. International Journal of Performance Analysis in Sports, 13 (1), 64-82.
  • Deeks, M. (2022, diciembre 31). Have Shooting Specialists Become Overvalued In The NBA?. Descargado desde:
  • Deshpande, S. & Jensen, S. (2016). Estimating an NBA player’s impact on his team’s chances of winning. Journal of Quantitative Analysis in Sports, 12(2), 51-72.
  • Dowsett, B. (2023, octubre 20). ‘An exciting next few years’: will Hawk-Eye spark an NBA data revolution?
  • Duque Ramos, V. H., Reina Román, M., Mancha Triguero, D., Ibáñez Godoy, S. J., & Saenz Lopez, P. (2021). Relación de la carga de entrenamiento con las emociones y el rendimiento en baloncesto formativo (Relation of training load with emotions and performance in formative basketball). Retos, 40, 164–173.
  • Ertug, G. &. Castellucci, F. (2013). Getting what you need: How reputation and status affect team performance, hiring, and salaries in the NBA. Academy of Management Journal, 56 (2), 407–431.
  • Grenha, P., Moura, J., Guimarães, E., Fonseca, P., Sousa, F., & Janeira, M. (2022). Efectos de un programa de autoentrenamiento sobre el rendimiento y cinemática de tiro en jóvenes jugadores de baloncesto: un caso de estudio (Effects of a self-training program on shooting performance and kinematics in young basketball players: a case stu. Retos, 43, 256–263.
  • Hollinger J. (2005). Pro Basketball Forecast, 2005–06. Washington, DC: Potomac
  • Katris C. (2023). Investigation of FIBA World Cup 2019 Evidence Using Advanced Statistical Analysis and Quantitative Tools. Engineering Proceedings, 39 (1), 85.
  • Kubatko, J., Oliver, D., Pelton, K. & Rosenbaum, D. (2007). A Starting Point for Analyzing Basketball Statistics. Journal of Quantitative Analysis in Sports, 3(3).
  • Kula, F. & Koçer, R. G. (2020). Why is it difficult to understand statistical inference? Reflections on the opposing directions of construction and application of inference framework, Teaching Mathematics and its Applications: An International Journal of the IMA, 39(4), 248-265.
  • Lamas, L., Santana, F., Heiner, M., Ugrinowitsch, C. & Fellingham, G. (2015) Modeling the Offensive-Defensive Interaction and Resulting Outcomes in Basketball. PLoS ONE 10 (12): e0144435.
  • Lewis, M. M. (2003). Moneyball: The art of winning an unfair game. W.W. Norton & Company Inc.
  • Martínez, J. A. (2012). Factors determining production (FDP) in basketball. Economic & Business Letters, 1(1), 21-29.
  • Martínez, J. A. (2019). A more robust estimation and extension of factors determining production (FDP) of basketball players. International Journal of Physical Education, Sports and Health, 6(3), 81-85.
  • Martínez, J. A. & Martínez, L. (2010). Un método probabilístico para las clasificaciones estadísticas de jugadores en baloncesto. Revista Internacional de Ciencias del Deporte. 18(6), 3-36.
  • Papadaki, I. & Tsagris, M. (2022). Are NBA Players’ Salaries in Accordance with Their Performance on Court?. In: Terzioğlu, M.K. (eds) Advances in Econometrics, Operational Research, Data Science and Actuarial Studies. Contributions to Economics. Springer, Cham.
  • Pradhan, S. (2018). Ranking regular seasons in the NBA’s Modern Era using grey relational analysis. Journal of Sports Analytics, 4(1), 31-63.
  • Pradhan, S. & Chachad, R. (2021) Re-ranking regular seasons in the National Basketball Association’s modern era : A replication and extension of Pradhan (2018). Journal of Statistics and Management Systems, 24 (7), 1503-1522.
  • Sigler, K. J. & Sackley, W. H. (2000), NBA players: are they paid for performance? Managerial Finance, 26 (7), 46-51.
  • Tener, Z. & Franks, A. (2021). Modeling Player and Team Performance in Basketball. Annual Review of Statistics and Its Application, 8(1), 1-23.
  • Wilson, F. (2018, noviembre 14 ). Why don’t we understand statistics? Fixed mindsets may be to blame