Ecuaciones Diferenciales y Análisis Numérico
ECUDIFA
Cameron University
Lawton, Estados UnidosPublicaciones en colaboración con investigadores/as de Cameron University (14)
2021
-
A unified convergence analysis for single step-type methods for non-smooth operators
Journal of Computational Analysis and Applications, Vol. 29, Núm. 2, pp. 327-343
2020
-
A multistep Steffensen-type method for solving nonlinear systems of equations
Mathematical Methods in the Applied Sciences
-
On the local and semilocal convergence of a parameterized multi-step Newton method
Journal of Computational and Applied Mathematics, Vol. 376
2019
-
A unified convergence analysis for some two-point type methods for Nonsmooth Operators
Mathematics, Vol. 7, Núm. 8
-
Extended local convergence for some inexact methods with applications
Journal of Mathematical Chemistry, Vol. 57, Núm. 5, pp. 1508-1523
2018
-
On the local convergence study for an efficient k-step iterative method
Journal of Computational and Applied Mathematics
-
On two high-order families of frozen Newton-type methods
Numerical Linear Algebra with Applications, Vol. 25, Núm. 1
2017
-
Expanding the applicability of some high order Househölder-like methods
Algorithms, Vol. 10, Núm. 2
-
Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions
Numerical Algorithms, Vol. 74, Núm. 2, pp. 371-391
2014
-
Expanding the Applicability of High-Order Traub-Type Iterative Procedures
Journal of Optimization Theory and Applications, Vol. 161, Núm. 3, pp. 837-852
-
Local convergence of the Gauss-Newton method for injective-overdetermined systems
Journal of the Korean Mathematical Society, Vol. 51, Núm. 5, pp. 955-970
-
Newton-type methods on Riemannian manifolds under Kantorovich-type conditions This paper is dedicated to the memory of Sergio Plaza.
Applied Mathematics and Computation, Vol. 227, pp. 762-787
-
Traub-type high order iterative procedures on Riemannian manifolds
SeMA Journal, Vol. 63, Núm. 1, pp. 27-52
2013
-
On a bilinear operator free third order method on Riemannian manifolds
Applied Mathematics and Computation, Vol. 219, Núm. 14, pp. 7429-7444