Fresh-Cut Fruit and Vegetables: Emerging Eco-friendly Techniques for Sanitation and Preserving Safety

  1. Artés-Hernández, Francisco
  2. Martínez-Hernández, Ginés Benito
  3. Aguayo, Encarna
  4. Gómez, Perla A.
  5. Artés, Francisco
Libro:
Postharvest Handling

Año de publicación: 2017

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.69476 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The current high demand of minimally processed or fresh-cut fruit and vegetables results from the consumer’s desire for healthy, convenient, fresh, and ready-to-eat plant food-derived commodities. Fresh-cut fruits and vegetables are usually packaged under active- or passive-modified atmosphere packaging, while its shelf life must be under refrigerated conditions. The most important goal to preserve quality and safety focuses on releasing the microbial spoilage flora, since every unit operation involved will influence the final load. Sanitation in the washing step is the only unit operation able to reduce microbial load throughout the production chain. Chlorine is widely used as an efficient sanitation agent, but some disadvantages force to find eco-friendly emerging alternatives. It is necessary to deal with aspects related to sustainability because it could positively contribute to the net carbon balance besides reducing its use. Several innovative techniques seem to reach that target. However, industrial changes for replacing conventional techniques request a fine knowledge of the benefits and restrictions as well as a practical outlook. This chapter reviews the principles of emerging eco-friendly techniques for preserving quality and safety of fresh-cut products in order to meet the expected market’s demand.

Referencias bibliográficas

  • Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Advances in Nutrition: An International Review Journal. 2012;3:506-516. DOI: 10.3945/an.112.002154
  • Artés F, Allende A. Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed leafy vegetables. European Journal of Horticultural Science. 2005;70:231-245
  • Nieuwenhuijsen MJ, Toledano MB, Elliott P. Uptake of chlorination disinfection by-products; a review and a discussion of its implications for exposure assessment in epidemiological studies. Journal of Exposure Analysis and Environmental Epidemiology. 2000;10:586-599. DOI: 10.1038/sj.jea.7500139
  • Suslow TV. Postharvest Chlorination- Basic Properties and Key points for Effective Disinfection. University of California: Division of Agriculture and Natural Resources; 1997. p. 8003
  • Artés F, Gómez P, Aguayo E, Escalona V, Artés-Hernández F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology. 2009;51:287-296. DOI: 10.1016/j.postharvbio.2008.10.003
  • European Union (EU). Commission implementing regulation (EU) 2016/672 approving peracetic acid as an existing active substance for use in biocidal products for product-types 11 and 12. Official Journal of the European Union. 2006;L116:3-7
  • Food and Drug Administration (FDA). Title 21: Food and Drugs. Section. Part 173: Secondary direct food additives permitted in food for human consumption [Internet]. 2016. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=173 [Accessed: 2017-07-10]
  • Stampi S, De Luca G, Zanetti F. Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents. Journal of Applied Microbiology. 2001;91:833-838. DOI: 10.1046/j.1365-2672.2001.01451.x
  • Park CM, Beuchat LR. Evaluation of sanitizers for killing Escherichia coli O157:H7, Salmonella and naturally occurring microorganisms on cantaloupes, honeydew melons, and asparagus. Dairy Food and Environmental Sanitation. 1999;19:842-847
  • Wright JR, Summer SS, Hackney CR, Pierson MD, Zoecklein W. Reduction of Escherichia coli O157:H7 on apples using wash and chemical sanitizers treatments. Dairy Food and Environmental Sanitation. 2000;20:120-126
  • Ruiz-Cruz S, Acedo-Félix E, Díaz-Cinco M, Islas-Osuna MA, González-Aguilar GA. Efficacy of sanitizers in reducing Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control. 2007;18:1383-1390. DOI: 10.1016/j.foodcont.2006.09.008
  • Silveira A, Aguayo E, Leglise A, Artés F. Emerging sanitizers and clean room improved the microbial quality of fresh-cut ‘Galia’ melon. In: 3rd International Symposium on Food and Agricultural Products: Processing and Innovations; 24-26 September 2007; Naples. Milan: Associazione Italiana Di Ingegneria Chimica (AIDIC); 2007. CDrom
  • Vandekinderen I, Devlieghere F, De Meulenaer B, Ragaert P, Van Camp J. Optimization and evaluation of a decontamination step with peroxyacetic acid for fresh-cut produce. Food Microbiology. 2009;26:882-888. DOI: 10.1016/j.fm.2009.06.004
  • Ge C, Bohrerova Z, Lee J. Inactivation of internalized Salmonella Typhimurium in lettuce and green onion using ultraviolet C irradiation and chemical sanitizers. Journal of Applied Microbiology. 2013;114:1415-1424. DOI: 10.1111/jam.12154
  • Neo SY, Lim PY, Phua LK, Khoo GH, Kim SJ, Lee SC, Yuk HG. Efficacy of chlorine and peroxyacetic acid on reduction of natural microflora, Escherichia coli O157:H7, Listeria monocyotgenes and Salmonella spp. on mung bean sprouts. Food Microbiology. 2013;36:475-480. DOI: 10.1016/j.fm.2013.05.001
  • Martínez-Hernández GB, Navarro-Rico J, Gómez PA, Otón M, Artés F, Artés-Hernández F. Combined sustainable sanitising treatments to reduce Escherichia coli and Salmonella enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control. 2015;47:312-317. DOI: 10.1016/j.foodcont.2014.07.029
  • Parish ME, Beuchat LR, Suslow TV, Harris LJ, Garrett EH, Farber JN, Busta FF. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety. 2003;2:161-173. DOI: 10.1111/j.1541-4337.2003.tb00033.x
  • Betts G, Everis L. Alternatives to hypochlorite washing systems for the decontamination of fresh fruit and vegetables. In: Jongen W, editor. Improving the Safety of Fresh Fruit and Vegetables. 1st ed. Wageningen: Woodhead Publishing Limited; 2005. p. 351-372. DOI: 10.1533/9781845690243.3.351I
  • European Food Safety Authority (EFSA). Scientific opinion on the safety of gaseous chlorine dioxide as a preservative slowly released in cold storage areas. EFSA Journal. 2016;14:4388-4406. DOI: 10.2903/j.efsa.2016.4388
  • Trinetta V, Vaidya N, Linton R, Morgan M. Evaluation of chlorine dioxide gas residues on selected food produce. Journal of Food Science. 2011;76:T11–T15. DOI: 10.1111/j.1750-3841.2010.01911.x
  • United States Environmental Protection Agency (EPA). Chapter 4: Chlorine dioxide. In: EPA, editor. EPA Guidance Manual: Alternative Disinfectants and Oxidants. Office of Water (4607);1999. p. 36
  • Keskinen LA, Burke A, Annous BA. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. International Journal of Food Microbiology. 2009;132:134-140. DOI: 10.1016/j.ijfoodmicro.2009.04.006
  • Mahmoud BSM, Bhagat AR, Linton RH. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. Food Microbiology. 2007;24:736-744. DOI: 10.1016/j.fm.2007.03.006
  • Mahmoud BSM, Linton RH. Inactivation kinetics of inoculated Escherichia coli O157:H7 and Salmonella enterica on lettuce by chlorine dioxide gas. Food Microbiology. 2008;25:244-252. DOI: 10.1016/j.fm.2007.10.015
  • Sy KV, Murray MB, Harrison MD, Beuchat LR. Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh-cut produce. Journal of Food Protection. 2005;68:1176-1187. DOI: 10.4315/0362-028X-68.6.1176
  • Rodgers SL, Cash JN, Siddiq M, Ryser ET. A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection. 2004;67:721-731
  • Chung CC, Huang TC, Yu CH, Shen FY, Chen HH. Bactericidal effects of fresh-cut vegetables and fruits after subsequent washing with chlorine dioxide. International Proceedings of Chemical, Biological & Environmental Engineering. 2011;9:107-112
  • Tomás-Callejas A, López-Gálvez F, Sbodio A, Artés F, Artés-Hernández F, Suslow TV. Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard. Food Control. 2012;23:325-332. DOI: 10.1016/j.foodcont.2011.07.022
  • López-Velasco G, Tomás-Callejas A, Sbodio A, Artés-Hernández F, Suslow TV. Chlorine dioxide dose, water quality and temperature affect the oxidative status of tomato processing water and its ability to inactivate Salmonella. Food Control. 2012;26:28-35. DOI: 10.1016/j.foodcont.2011.12.016
  • Tomás-Callejas A, López-Velasco G, Artés F, Artés-Hernández F. Acidified sodium chlorite optimisation assessment to improve quality of fresh-cut tatsoi baby leaves. Journal of the Science of Food and Agriculture. 2012;92:877-885. DOI: 10.1002/jsfa.4664
  • Ölmez H, Kretzschmar U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT – Food Science and Technology. 2009;42:686-693. DOI: 10.1016/j.lwt.2008.08.001
  • Sapers GM, Miller RL, Pilizota V, Kamp F. Shelf-life extension of fresh mushrooms (Agaricus bisporus) by application of hydrogen peroxide and browning inhibitors. Journal of Food Science. 2001;66:362-366. DOI: 10.1111/j.1365-2621.2001.tb11347.x
  • Huang Y, Ye M, Chen H. Efficacy of washing with hydrogen peroxide followed by aerosolized antimicrobials as a novel sanitizing process to inactivate Escherichia coli O157:H7 on baby spinach. International Journal of Food Microbiology. 2012;153:306-313. DOI: 10.1016/j.ijfoodmicro.2011.11.018
  • Ukuku DO, Fett W. Behavior of Listeria monocytogenes inoculated on cantaloupe surfaces and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. Journal of Food Protection. 2002;65:924-930. DOI: 10.4315/0362-028X-65.6.924
  • Ukuku DO, Mukhopadhyay S, Geveke D, Olanya M, Niemira B. Effect of hydrogen peroxide in combination with minimal thermal treatment for reducing bacterial populations on cantaloupe rind surfaces and transfer to fresh-cut pieces. Journal of Food Protection. 2016;79:1316-1324. DOI: 10.4315/0362-028x.jfp-16-046
  • Sapers G. Hydrogen peroxide as an alternative to chlorine for sanitizing fruits and vegetables. IFIS Publishing-Food Science Central [Internet]. 2003. Available from: https://foodinfo.ifis.org/ [Accessed: 2017-07-10]
  • Van Haute S, Tryland I, Veys A, Sampers I. Wash water disinfection of a full-scale leafy vegetables washing process with hydrogen peroxide and the use of a commercial metal ion mixture to improve disinfection efficiency. Food Control. 2015;50:173-183. DOI: 10.1016/j.foodcont.2014.08.028
  • Lianou A, Koutsoumanis KP, Sofos JN. Organic acids and other chemical treatments for microbial decontamination of food. In: Demirci A, Ngadi MO, editors. Microbial Decontamination in the Food Industry. 1st ed. Cambridge: Woodhead Publishing; 2012. p. 592-664. DOI: 10.1533/9780857095756.3.592I
  • Carpenter CE, Broadbent JR. External concentration of organic acid anions and pH: Key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. Journal of Food Science. 2009;74:R12–R15. DOI: 10.1111/j.1750-3841.2008.00994.x
  • Meireles A, Giaouris E, Simões M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International. 2016;82:71-85. DOI: 10.1016/j.foodres.2016.01.021
  • Gurtler JB, Mai TL. Preservatives – Traditional preservatives – Organic acids. In: Batt CA Tortorello ML, editors. Encyclopedia of Food Microbiology. Oxford: Academic Press; 2014. pp. 119-130
  • Aguayo E, Allende A, Artés F. Keeping quality and safety of minimally fresh processed melon. European Food Research and Technology. 2003;216:494-499. DOI: 10.1007/s00217-003-0682-7
  • Gómez P, Artés F. Ascorbic and citric acids to preserve quality of minimally processed green celery. In: Proceedings of the IV Postharvest Iberian Symposium; 6-9 October 2004; Oeiras. Lisbon: APH; 2004. pp. 369-373
  • Akbas MY, Olmez H. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Letters in Applied Microbiology. 2007;44:619-624. DOI: 10.1111/j.1472-765X.2007.02127.x
  • Park SH, Choi MR, Park JW, Park KH, Chung MS, Ryu S, Kang DH. Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. Journal of Food Science. 2011;76:M293-M298. DOI: 10.1111/j.1750-3841.2011.02205.x
  • Martín-Diana AB, Rico D, Frías J, Henehan GTM, Mulcahy J, Barat JM, Barry-Ryan C. Effect of calcium lactate and heat-shock on texture in fresh-cut lettuce during storage. Journal of Food Engineering. 2006;77:1069-1077. DOI: 10.1016/j.jfoodeng.2005.08.037
  • Rico D, Martín-Diana AB, Frías JM, Barat JM, Henehan GTM, Barry-Ryan C. Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to-eat carrots. Journal of Food Engineering. 2007;79:1196-1206. DOI: 10.1016/j.jfoodeng.2006.04.032
  • Martín-Diana AB, Rico D, Barry-Ryan C, Frías JM, Mulcahy J, Henehan GTM. Comparison of calcium lactate with chlorine as a washing treatment for fresh-cut lettuce and carrots: Quality and nutritional parameters. Journal of the Science of Food and Agriculture. 2005;85:2260-2268. DOI: 10.1002/jsfa.2254
  • Aguayo E, Escalona VH, Artés F. Effect of hot water treatment and various calcium salts on quality of fresh-cut ‘Amarillo’ melon. Postharvest Biology and Technology. 2008;47:397-406. DOI: 10.1016/j.postharvbio.2007.08.001
  • Techakanon C, Barrett DM. The effect of calcium chloride and calcium lactate pretreatment concentration on peach cell integrity after high-pressure processing. International Journal of Food Science & Technology. 2017;52:635-643. DOI: 10.1111/ijfs.13316
  • Youssef K, Ligorio A, Sanzani SM, Nigro F, Ippolito A. Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biology and Technology. 2012;72:57-63. DOI: 10.1016/j.postharvbio.2012.05.004
  • Youssef K, Sanzani SM, Ligorio A, Ippolito A, Terry LA. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest Biology and Technology. 2014;87:61-69. DOI: 10.1016/j.postharvbio.2013.08.006
  • Ongeng D, Devlieghere F, Debevere J, Coosemans J, Ryckeboer J. The efficacy of electrolysed oxidising water for inactivating spoilage microorganisms in process water and on minimally processed vegetables. International Journal of Food Microbiology. 2006;109:187-197. DOI: 10.1016/j.ijfoodmicro.2005.12.013
  • Izumi H. Electrolyzed water as a disinfectant for fresh-cut vegetables. Journal of Food Science. 1999;64:536-539. DOI: 10.1111/j.1365-2621.1999.tb15079.x
  • Ju S-Y, Ko J-J, Yoon H-S, Seon S-J, Yoon Y-R, Lee D-I, Kim S-Y, Chang H-J. Does electrolyzed water have different sanitizing effects than sodium hypochlorite on different vegetable types? British Food Journal. 2017;119:342-356. DOI:10.1108/BFJ-06-2016-0283
  • Kapałka A, Fóti G, Comninellis C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. Journal of Applied Electrochemistry. 2008;38:7-16. DOI: 10.1007/s10800-007-9365-6
  • Food and Drug Administration (FDA). Food Additive Status List. [Internet]. 2013. Available from: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm [Accessed: 2017-07-10]
  • Navarro-Rico J, Artés-Hernández F, Gómez PA, Núñez-Sánchez MÁ, Artés F, Martínez-Hernández GB. Neutral and acidic electrolysed water kept microbial quality and health promoting compounds of fresh-cut broccoli throughout shelf life. Innovative Food Science and Emerging Technologies. 2014;21:74-81. DOI: 10.1016/j.ifset.2013.11.004
  • Arévalos-Sánchez M, Regalado C, Martín SE, Meas-Vong Y, Cadena-Moreno E, García-Almendárez BE. Effect of neutral electrolyzed water on lux-tagged Listeria monocytogenes EGDe biofilms adhered to stainless steel and visualization with destructive and non-destructive microscopy techniques. Food Control. 2013;34:472-477. DOI: 10.1016/j.foodcont.2013.05.021
  • Kim C, Hung Y-C, Brackett RE, Frank JF. Inactivation of Listeria monocytogenes biofilms by electrolyzed oxidizing water. Journal of Food Processing and Preservation. 2001;25:91-100. DOI: 10.1111/j.1745-4549.2001.tb00446.x
  • Deza MA, Araujo M, Garrido MJ. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Letters in Applied Microbiology. 2005;40:341-346. DOI: 10.1111/j.1472-765X.2005.01679.x
  • Martínez-Hernández GB, Artés-Hernández F, Gómez PA, Formica AC, Artés F. Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharvest Biology and Technology. 2013;76:125-134. DOI: 10.1016/j.postharvbio.2012.09.013
  • Wang, H. Feng, H., Luo, Y. Surface treatment of fresh-cut lettuce with acidic electrolyzed water to extend shelf life. In: Proceedings of the Annual Meeting of the Institute of Food Technologist (IFT); 12-16 July 2003; Chicago IL. Chicago: IFT; 2003. p. 265
  • Rico D, Martín-Diana AB, Barry-Ryan C, Frías JM, Henehan GTM, Barat JM. Use of neutral electrolysed water (EW) for quality maintenance and shelf-life extension of minimally processed lettuce. Innovative Food Science and Emerging Technologies. 2008;9:37-48. DOI: 10.1016/j.ifset.2007.05.002
  • Koseki S, Itoh K. Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions. Journal of Food Protection. 2001;64:1935-1942. DOI: 10.4315/0362-028X-64.12.1935
  • Tomás-Callejas A, Martínez-Hernández GB, Artés F, Artés-Hernández F. Neutral and acidic electrolyzed water as emergent sanitizers for fresh-cut mizuna baby leaves. Postharvest Biology and Technology. 2011;59:298-306. DOI: 10.1016/j.postharvbio.2010.09.013
  • Yang H, Swem BL, Li Y. The effect of pH on inactivation of pathogenic bacteria on fresh-cut lettuce by dipping treatment with electrolyzed water. Journal of Food Science. 2003;68:1013-1017. DOI: 10.1111/j.1365-2621.2003.tb08280.x
  • Posada-Izquierdo GD, Pérez-Rodríguez F, López-Gálvez F, Allende A, Gil MI, Zurera G. Modeling growth of Escherichia coli O157:H7 in fresh-cut lettuce treated with neutral electrolyzed water and under modified atmosphere packaging. International Journal of Food Microbiology. 2014;177:1-8. DOI: 10.1016/j.ijfoodmicro.2013.12.025
  • Fallanaj F, Ippolito A, Ligorio A, Garganese F, Zavanella C, Sanzani SM. Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defence responses against green mould in citrus fruit. Postharvest Biology and Technology. 2016;115:18-29. DOI: 10.1016/j.postharvbio.2015.12.009
  • Horvath ML, Bilitzky L, Huttner J. Fields of utilization of ozone. In: Clark RJH, editor. Ozone. New York (USA): Elsevier Science Publishing Co.; 1985. pp. 257-316
  • Antoniou MG, Andersen HR. Evaluation of pretreatments for inhibiting bromate formation during ozonation. Environmental Technology. 2012;33:1747-1753. DOI: 10.1080/09593330.2011.644586
  • Graham DM. Use of ozone for food processing. Food Technology. 1997;51:72-75. DOI: 10.1016/j.lwt.2003.10.014
  • Horvitz S, Cantalejo MJ. Application of ozone for the postharvest treatment of fruits and vegetables. Critical Reviews in Food Science and Nutrition. 2014;54:312-339. DOI: 10.1080/10408398.2011.584353
  • Tzortzakis N, Chrysargyris A. Postharvest ozone application for the preservation of fruits and vegetables. Food Reviews International. 2017;33:270-315. DOI: 10.1080/87559129.2016.1175015
  • Food and Drug Administration (FDA). Title 21: Food and Drugs. Section. Part 173: Secondary direct food additives permitted in food for human consumption [Internet]. 2016. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=173.368 [Accessed: 2017-07-10]
  • Aguayo E, Escalona V, Silveira AC, Artés F. Quality of tomato slices disinfected with ozonated water. Food Science and Technology International. 2014;20:227-235. DOI: 10.1177/1082013213482846
  • Selma MV, Ibanez AM, Cantwell M, Suslow T. Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiology. 2008;25:558-565. DOI: 10.1016/j.fm.2008.02.006
  • Klockow PA, Keener KM. Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT – Food Science and Technology. 2009;42:1047-1053. DOI: 10.1016/j.lwt.2009.02.011
  • Zhang L, Lu Z, Yu Z, Gao X. Preservation of fresh-cut celery by treatment of ozonated water. Food Control. 2005;16:279-283. DOI: 10.1016/j.foodcont.2004.03.007
  • Rico D, Martín-Diana AB, Frías JM, Henehan GTM, Barry-Ryan C. Effect of ozone and calcium lactate treatments on browning and texture properties of fresh-cut lettuce. Journal of the Science of Food and Agriculture. 2006;86:2179-2188. DOI: 10.1002/jsfa.2594
  • Gutiérrez DR, Chaves AR, Rodríguez SDC. Use of UV-C and gaseous ozone as sanitizing agents for keeping the quality of fresh-cut rocket (Eruca sativa mill). Journal of Food Processing and Preservation. 2017;41e:1-13. DOI: 10.1111/jfpp.12968
  • Aguayo E, Escalona VH, Artés F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biology and Technology. 2006;39:169-177. DOI: 10.1016/j.postharvbio.2005.11.005
  • Chen J, Hu Y, Wang J, Hu H, Cui H. Combined effect of ozone treatment and modified atmosphere packaging on antioxidant defense system of fresh-cut green peppers. Journal of Food Processing and Preservation. 2016;40:1145-1150. DOI: 10.1111/jfpp.12695
  • Silveira AC, Aguayo E, Artés F. Emerging sanitizers and clean room packaging for improving the microbial quality of fresh-cut ‘Galia’ melon. Food Control. 2010;21:863-871. DOI: 10.1016/j.foodcont.2009.11.017
  • Baur S, Klaiber R, Hammes WP, Carle R. Sensory and microbiological quality of shredded, packaged iceberg lettuce as affected by pre-washing procedures with chlorinated and ozonated water. Innovative Food Science & Emerging Technologies. 2004;5:45-55. DOI: 10.1016/j.ifset.2003.10.002
  • Burt S. Essential oils: Their antibacterial properties and potential applications in foods-A review. International Journal of Food Microbiology. 2004;94:223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022
  • Hirasa K, Takemasa M, Antimicrobial and antioxidant properties of spices. In: Hirasa K, Takemasa M, editors. Spice Science and Technology. New York (USA): Marcel Dekker Inc.; 1998. pp. 163-200
  • Rota C, Carraminana JJ, Burillo J, Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. Journal of Food Protection. 2004;67:1252-1256. DOI: 10.4315/0362-028X-67.6.1252
  • Nychas GJE, Skandamis PN, Tassou CC, Antimicrobials from herbs and spices. In: Roller S, editor. Natural Antimicrobials for the Minimal Processing of Foods. Boca Raton FL (USA): CRC Press; 2000
  • Bagamboula CF, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiology. 2004;21:33-42. DOI: 10.1016/S0740-0020(03)00046-7
  • Onursal CE, Eren I, Güneyli A, Topcu T, Çalhan O, Bayindir D. Effect of Carvacrol on Microbial Activity and Storage Quality of Fresh-cut ‘Braeburn’ Apple. Leuven, Belgium: International Society for Horticultural Science (ISHS); 2014. pp. 215-221
  • Roller S, Seedhar P. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4 and 8℃. Letters in Applied Microbiology. 2002;35:390-394. DOI: 10.1046/j.1472-765X.2002.01209.x
  • Valero D, Valverde JM, Martínez-Romero D, Guillén F, Castillo S, Serrano M. The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of table grapes. Postharvest Biology and Technology. 2006;41:317-327. DOI: 10.1016/j.postharvbio.2006.04.011
  • Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids. 2015;43:547-556. DOI: 10.1016/j.foodhyd.2014.07.012
  • Martínez-Hernández GB, Amodio ML, Colelli G. Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innovative Food Science & Emerging Technologies. 2017;41:56-63. DOI: 10.1016/j.ifset.2017.02.005
  • Gao H, Zhou Y, Fang X, Mu H, Han Q, Chen H-J. Development and characterization of an antimicrobial packaging film coating containing AITC or carvacrol for preservation of fresh-cut vegetable. In: Book of Abstracts of the III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety; 13-18 September 2015; Davis. Davis: UC Davis; 2015. p. 175
  • Tiwari BK, Valdramidis VP, O’ Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry. 2009;57:5987-6000. DOI: 10.1021/jf900668n
  • Jang M, Hong E, Kim GH. Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. Journal of Food Science. 2010;75:412-416. DOI: 10.1111/j.1750-3841.2010.01725.x
  • Sofrata A, Santangelo EM, Azeem M, Borg-Karlson A-K, Gustafsson A, Pütsep K. Benzyl isothiocyanate, a major component from the roots of salvadora persica is highly active against gram-negative bacteria. PLoS One. 2011;6:e23045. DOI: 10.1371/journal.pone.0023045
  • EFSA. EFSA panel on food additives and nutrient sources added to food (ANS): Scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. EFSA Journal. 2010;8:1943-1983
  • Pablos C, Fernández A, Thackeray A, Marugán J. Effects of natural antimicrobials on prevention and reduction of bacterial cross-contamination during the washing of ready-to-eat fresh-cut lettuce. Food Science and Technology International. 2017;23:403-414. DOI: 10.1177/1082013217697851
  • Galvez A, Abriouel H, Lopez RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology. 2007;120:51-70. DOI: 10.1016/j.ijfoodmicro.2007.06.001
  • Bari ML, Ukuku DO, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. Journal of Food Protection. 2005;68:1381-1387. DOI: 10.4315/0362-028X-68.7.1381
  • Hansen JN, Sandine WE. Nisin as a model food preservative. Critical Reviews in Food Science and Nutrition. 1994;34:69-93. DOI: 10.1080/10408399409527650
  • Silveira AC, Conesa A, Aguayo E, Artés F. Alternative sanitizers to chlorine for use on fresh-cut “Galia” (Cucumis melo var. catalupensis) melon. Journal of Food Science. 2008;73:M405–M411. DOI: 10.1111/j.1750-3841.2008.00939.x
  • Allende A, Martinez B, Selma V, Gil MI, Suarez JE, Rodriguez A. Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiology. 2007;24:759-766. DOI: 10.1016/j.fm.2007.03.002
  • Sanchís E, González S, Ghidelli C, Sheth CC, Mateos M, Palou L, Pérez-Gago MB. Browning inhibition and microbial control in fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) by apple pectin-based edible coatings. Postharvest Biology and Technology. 2016;112:186-193. DOI: 10.1016/j.postharvbio.2015.09.024
  • Lin H, Lin Y, Hung Y-C, Chen Y, Fan M. Effects of nisin treatment on microbial growth and quality of fresh-cut Chinese yam during storage. In: Book of Abstracts of the III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety; 13-18 September 2015; Davis. Davis: UC Davis; 2015. p. 145
  • Randazzo CL, Pitino I, Scifò GO, Caggia C. Biopreservation of minimally processed iceberg lettuces using a bacteriocin produced by Lactococcus lactis wild strain. Food Control. 2009;20:756-763. DOI: 10.1016/j.foodcont.2008.09.020
  • Alegre I, Viñas I, Usall J, Anguera M, Figge MJ, Abadías M. An Enterobacteriaceae species isolated from apples controls foodborne pathogens on fresh-cut apples and peaches. Postharvest Biology and Technology. 2012;74:118-124. DOI: 10.1016/j.postharvbio.2012.07.004
  • Trias R, Bañeras L, Badosa E, Montesinos E. Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology. 2008;123:50-60. DOI: 10.1016/j.ijfoodmicro.2007.11.065
  • Fan Y, Xu Y, Wang D, Zhang L, Sun J, Sun L, Zhang B. Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria × ananassa) preservation quality. Postharvest Biology and Technology. 2009;53:84-90. DOI: 10.1016/j.postharvbio.2009.03.002
  • Mari M, Martini C, Spadoni A, Rouissi W, Bertolini P. Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology. 2012;73:56-62. DOI: 10.1016/j.postharvbio.2012.05.014
  • Alegre I, Viñas I, Usall J, Teixidó N, Figge MJ, Abadías M. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiology. 2013;34:390-399. DOI: 10.1016/j.fm.2013.01.013
  • Abadías M, Altisent R, Usall J, Torres R, Oliveira M, Viñas I. Biopreservation of fresh-cut melon using the strain Pseudomonas graminis CPA-7. Postharvest Biology and Technology. 2014;96:69-77. DOI: 10.1016/j.postharvbio.2014.05.010
  • Plaza L, Altisent R, Alegre I, Viñas I, Abadías M. Changes in the quality and antioxidant properties of fresh-cut melon treated with the biopreservative culture Pseudomonas graminis CPA-7 during refrigerated storage. Postharvest Biology and Technology. 2016;111:25-30. DOI: 10.1016/j.postharvbio.2015.07.023
  • Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT – Food Science and Technology. 2010;43:573-583. DOI: 10.1016/j.lwt.2009.12.008
  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology. 2003;69:4519-4526. DOI: 10.1128/aem.69.8.4519-4526.2003
  • Spricigo DA, Bardina C, Cortes P, Llagostera M. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. International Journal of Food Microbiology. 2013;165:169-174. DOI: 10.1016/j.ijfoodmicro.2013.05.009
  • Vonasek E, Choi A, Sanchez J, Nitin N. Incorporating bacteriophages into edible dip coatings to control food pathogens on fresh produce. In: Book of Abstracts of the III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety; 13-18 September 2015; Davis. Davis: UC Davis; 2015. p. 115
  • Food and Drug Administration (FDA). Title 21: Food and Drugs. Section. Part 101: Food Labelling [Internet]. 2016. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=101&showFR=1&subpartNode=21:2.0.1.1.2.6 [Accessed: 2017-07-10]
  • Peña-Estévez ME, Gómez PA, Artés F, Aguayo E, Martínez-Hernández GB, Otón M, Galindo A, Artés-Hernández F. Quality changes of fresh-cut pomegranate arils during shelf life as affected by deficit irrigation and postharvest vapour treatments. Journal of the Science of Food and Agriculture. 2015;95:2325-2336. DOI: 10.1002/jsfa.6954
  • Maghoumi M, Mostofi Y, Zamani Z, Talaie A, Boojar M, Gómez PA. Influence of hot-air treatment, superatmospheric O2 and elevated CO2 on bioactive compounds and storage properties of fresh-cut pomegranate arils. International Journal of Food Science & Technology. 2014;49:153-159. DOI: 10.1111/ijfs.12290
  • Beirão-da-Costa S, Empis J, Moldão-Martins M. Fresh-cut kiwifruit structure and firmness as affected by heat pre-treatments and post-cut calcium dips. Food and Bioprocess Technology. 2014;7:1128-1136. DOI: 10.1007/s11947-013-1151-3
  • Martínez-Hernández GB, Gómez P, Orihuel-Iranzo B, Bretó J, Artés-Hernández F, Artés F. Innovative and sustainable postharvest treatments to control physiological disorders and decay in lemon fruit during long transport and commercialization. In: VIII International Postharvest Symposium, Cartagena. 2016
  • Obando-Ulloa JM, Jiménez V, Machuca-Vargas A, Beaulieu JC, Infante R, Escalona-Contreras VH. Effect of hot water dips on the quality of fresh-cut Ryan Sun peaches. Idesia (Arica). 2015;33:13-26. DOI: 10.4067/S0718-34292015000100002
  • Aguayo E, Requejo-Jackman C, Stanley R, Woolf A. Hot water treatment in combination with calcium ascorbate dips increases bioactive compounds and helps to maintain fresh-cut apple quality. Postharvest Biology and Technology. 2015;110:158-165. DOI: 10.1016/j.postharvbio.2015.07.001
  • Wang Q, Nie X, Cantwell M. Hot water and ethanol treatments can effectively inhibit the discoloration of fresh-cut sunchoke (Helianthus tuberosus L.) tubers. Postharvest Biology and Technology. 2014;94:49-57. DOI: 10.1016/j.postharvbio.2014.03.003
  • Murata M, Tanaka E, Minoura E, Homma S. Quality of cut lettuce treated by heat shock: Prevention of enzymatic browning, repression of phenylalanine ammonia–lyase activity, and improvement on sensory evaluation during. Bioscience, Biotechnology, and Biochemistry. 2004;68:501-507. DOI: 10.1271/bbb.68.501
  • Hägele F, Baur S, Menegat A, Gerhards R, Carle R, Schweiggert RM. Chlorophyll fluorescence imaging for monitoring the effects of minimal processing and warm water treatments on physiological properties and quality attributes of fresh-cut salads. Food and Bioprocess Technology. 2016;9:650-663. DOI: 10.1007/s11947-015-1661-2
  • Koukounaras A, Siomos AS, Sfakiotakis E. Impact of heat treatment on ethylene production and yellowing of modified atmosphere packaged rocket leaves. Postharvest Biology and Technology. 2009;54:172-176. DOI: 10.1016/j.postharvbio.2009.07.002
  • Gómez F, Fernández L, Gergoff G, Guiamet JJ, Chaves A, Bartoli CG. Heat shock increases mitochondrial H2O2 production and extends postharvest life of spinach leaves. Postharvest Biology and Technology. 2008;49:229-234. DOI: 10.1016/j.postharvbio.2008.02.012
  • Glowacz M, Mogren LM, Reade JPH, Cobb AH, Monaghan JM. Can hot water treatments enhance or maintain postharvest quality of spinach leaves? Postharvest Biology and Technology. 2013;81:23-28. DOI: 10.1016/j.postharvbio.2013.02.004
  • Loaiza-Velarde JG, Mangrich ME, Campos-Vargas R, Saltveit ME. Heat shock reduces browning of fresh-cut celery petioles. Postharvest Biology and Technology. 2003;27:305-311. DOI: 10.1016/S0925-5214(02)00118-7
  • Barbagallo RN, Chisari M, Caputa G. Effects of calcium citrate and ascorbate as inhibitors of browning and softening in minimally processed ‘Birgah’ eggplants. Postharvest Biology and Technology. 2012;73:107-114. DOI: 10.1016/j.postharvbio.2012.06.006
  • Siddiq M, Roidoung S, Sogi DS, Dolan KD. Total phenolics, antioxidant properties and quality of fresh-cut onions (Allium cepa L.) treated with mild-heat. Food Chemistry. 2013;136:803-806. DOI: 10.1016/j.foodchem.2012.09.023
  • Maghoumi M, Gómez PA, Mostofi Y, Zamani Z, Artés-Hernández F, Artés F. Combined effect of heat treatment, UV-C and superatmospheric oxygen packing on phenolics and browning related enzymes of fresh-cut pomegranate arils. LWT – Food Science and Technology. 2013;54:389-396. DOI: 10.1016/j.lwt.2013.06.006
  • Peña-Estévez ME, Gómez PA, Artés F, Aguayo E, Martínez-Hernández GB, Galindo A, Torecillas A, Artés-Hernández F. Changes in bioactive compounds and oxidative enzymes of fresh-cut pomegranate arils during storage as affected by deficit irrigation and postharvest vapor heat treatments. Food Science and Technology International. 2016;22:665-676. DOI: 10.1177/1082013216635323
  • Maghoumi M, Gomez PA, Artes-Hernandez F, Mostofi Y, Zamani Z, Artes F. Hot water, UV-C and superatmospheric oxygen packaging as hurdle techniques for maintaining overall quality of fresh-cut pomegranate arils. Journal of the Science of Food and Agriculture. 2013;93:1162-1168. DOI: 10.1002/jsfa.5868
  • Martínez-Hernández GB, Amodio ML, Colelli G. Potential use of microwave treatment on fresh-cut carrots: physical, chemical and microbiological aspects. Journal of the Science of Food and Agriculture. 2016;96:2063-2072. DOI: 10.1002/jsfa.7319
  • Gray NF. Ultraviolet disinfectio. In: Percival SL, Chalmers RM, Embrey M, Hunter P, Sellwood JPW-J, editors. Microbiology of Waterborne Diseases. London: Academic Press; 2014. pp. 617-630.
  • Bintsis T, Litopoulou-Tzanetaki E, Robinson RK. Existing and potential applications of ultraviolet light in the food industry – A critical review. Journal of the Science of Food and Agriculture. 2000;80:637-645. DOI: 10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1
  • Yaun BR, Sumner SS, Eifert JD, Marcy JE. Inhibition of pathogens on fresh produce by ultraviolet energy. International Journal of Food Microbiology. 2004;90:1-8. DOI: 10.1016/S0168-1605(03)00158-2
  • Sharma G. Ultraviolet light. In: Robinson RK, Batt C, Patel P, editors. Encyclopedia of Food Microbiology-3. London: Academic Press; 1999. pp. 2208-2214
  • Ben Said M, Masahiro O, Hassen A. Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Annals of Microbiology. 2010;60:121-127. DOI: 10.1007/s13213-010-0017-4
  • Formica-Oliveira AC, Martínez-Hernández GB, Aguayo E, Gómez PA, Artés F, Artés-Hernández F. UV-C and hyperoxia abiotic stresses to improve healthiness of carrots: Study of combined effects. Journal of Food Science and Technology. 2016;53:1-12. DOI: 10.1007/s13197-016-2321-x
  • Hadjok C, Mittal GS, Warriner K. Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. Journal of Applied Microbiology. 2008;104:1014-1024. DOI: 10.1111/j.1365-2672.2007.03624.x
  • Kim Y-H, Jeong S-G, Back K-H, Park K-H, Chung M-S, Kang D-H. Effect of various conditions on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation. International Journal of Food Microbiology. 2013;166:349-355. DOI: 10.1016/j.ijfoodmicro.2013.08.010
  • Martínez-Hernández GB, Huertas J-P, Navarro-Rico J, Gómez PA, Artés F, Palop A, Artés-Hernández F. Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli. Food Microbiology. 2015;46:263-271. DOI: 10.1016/j.fm.2014.08.008
  • Artés-Hernández F, Escalona VH, Robles PA, Martínez-Hernández GB, Artés F. Effect of UV-C radiation on quality of minimally processed spinach leaves. Journal of the Science of Food and Agriculture. 2009;89:414-421. DOI: 10.1002/jsfa.3460
  • European Union (EU). Commission regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the European Union. 2005;L338:1-26
  • Escalona VH, Aguayo E, Martínez-Hernández GB, Artés F. UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biology and Technology. 2010;56:223-231. DOI: 10.1016/j.postharvbio.2010.01.008
  • Erkan M, Wang CY, Krizek DT. UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environmental and Experimental Botany. 2001;45:1-9. DOI: S0098-8472(00)00073-3
  • Martínez-Hernández GB, Gómez PA, Pradas I, Artés F, Artés-Hernández F. Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi® broccoli. Postharvest Biology and Technology. 2011;62:327-337. DOI: 10.1016/j.postharvbio.2011.06.015
  • Robles P, De Campos A, Artés-Hernández F, Gómez P, Calderón A, Ferrer M, Artés F. Combined effect of UV–C radiation and controlled atmosphere storage to preserve tomato quality. In: V Congreso Iberoamericano de Tecnología Postcosecha y Agroexportaciones; Cartagena (Spain). 2007
  • Jemni M, Gómez PA, Souza M, Chaira N, Ferchichi A, Otón M, Artés F. Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT – Food Science and Technology. 2014;59:649-655. DOI: 10.1016/j.lwt.2014.07.016
  • Pinheiro JC, Alegria CSM, Abreu MMMN, Gonçalves EM, Silva CLM. Evaluation of alternative preservation treatments (water heat treatment, ultrasounds, thermosonication and UV-C radiation) to improve safety and quality of whole tomato. Food and Bioprocess Technology. 2016;9:924-935. DOI: 10.1007/s11947-016-1679-0
  • Marquenie D, Michiels CW, Geeraerd AH, Schenk A, Soontjens C, Van Impe JF, Nicolaï BM. Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. International Journal of Food Microbiology. 2002;73:187-196. DOI: 10.1016/S0168-1605(01)00648-1
  • Artés-Hernández F, Robles PA, Gómez PA, Tomás-Callejas A, Artés F. Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biology and Technology. 2010;55:114-120. DOI: 10.1016/j.postharvbio.2009.09.002
  • Rocha ABO, Honório SL, Messias CL, Otón M, Gómez PA. Effect of UV-C radiation and fluorescent light to control postharvest soft rot in potato seed tubers. Scientia Horticulturae. 2015;181:174-181. DOI: 10.1016/j.scienta.2014.10.045
  • Allende A, Artés F. UV-C radiation as a novel technique for keeping quality of fresh processed ‘Lollo Rosso’ lettuce. Food Research International. 2003;36:739-746. DOI: 10.1016/S0963-9969(03)00054-1
  • Fan X, Toivonen PM, Rajkowski KT, Sokorai KJ. Warm water treatment in combination with modified atmosphere packaging reduces undesirable effects of irradiation on the quality of fresh-cut iceberg lettuce. Journal of Agricultural and Food Chemistry. 2003;51:1231-1236. DOI: 10.1021/jf020600c
  • González-Aguilar GA, Zavaleta-Gatica R, Tiznado-Hernández ME. Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology. 2007;45:108-116. DOI: 10.1016/j.postharvbio.2007.01.012
  • Alothman M, Bhat R, Karim AA. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology. 2009;20:201-212. DOI: 10.1016/j.tifs.2009.02.003
  • Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International. 2011;44:1875-1887. DOI: 10.1016/j.foodres.2011.02.053
  • Scattino C, Castagna A, Neugart S, Chan HM, Schreiner M, Crisosto CH, Tonutti P, Ranieri A. Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chemistry. 2014;163:51-60. DOI: 10.1016/j.foodchem.2014.04.077
  • Castagna A, Dall’Asta C, Chiavaro E, Galaverna G, Ranieri A. Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel of tomato fruits. Food Bioprocess Technology. 2014;7:2241-2250. DOI: 10.1007/s11947-013-1214-5
  • Du WX, Avena-Bustillos RJ, Breksa 3rd AP, McHugh TH. Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chemistry. 2012;134:1862-1869. DOI: 10.1016/j.foodchem.2012.03.097
  • Formica-Oliveira AC, Martínez-Hernández GB, Díaz-López V, Artés F, Artés-Hernández F. Effects of UV-B and UV-C combination on phenolic compounds biosynthesis in fresh-cut carrots. Postharvest Biology and Technology. 2017;127:99-104. DOI: 10.1016/j.postharvbio.2016.12.010
  • Kataoka I, Beppu K, Sugiyama A, Taira S. Enhancement of cooration of Satohnishiki sweet cherry fruit by postharvest irradiation with ultraviolet rays. Environment Control in Biology. 1996;34:313-319. DOI: 10.2525/ecb1963.34.313
  • Woltering EJ, Witkowska IM, Schouten R, Harbinson J. Low intensity postharvest lighting improves quality and shelf life of fresh-cut lettuce. In: Book of Abstracts of the III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety; 13-18 September 2015; Davis. Davis: UC Davis; 2015. p. 115
  • Oms-Oliu G, Martín-Belloso O, Soliva-Fortuny R. Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology. 2008;3:13. DOI: 10.1007/s11947-008-0147-x
  • Gómez-López VM, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: A review. Trends in Food Science and Technology. 2007;18:464-473. DOI: 10.1016/j.tifs.2007.03.010
  • Ramos-Villarroel AY, Martín-Belloso O, Soliva-Fortuny R. Bacterial inactivation and quality changes in fresh-cut avocado treated with intense light pulses. European Food Research and Technology. 2011;233:395-402. DOI: 10.1007/s00217-011-1533-6
  • Ramos-Villarroel AY, Aron-Maftei N, Martín-Belloso O, Soliva-Fortuny R. Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses. Postharvest Biology and Technology. 2012;69:32-39. DOI: 10.1016/j.postharvbio.2012.03.002
  • Ramos-Villarroel AY, Aron-Maftei N, Martín-Belloso O, Soliva-Fortuny R. The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control. 2012;24:206-213. DOI: 10.1016/j.foodcont.2011.09.029
  • Oms-Oliu G, Aguiló-Aguayo I, Martín-Belloso O, Soliva-Fortuny R. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biology and Technology. 2010;56:216-222. DOI: 10.1016/j.postharvbio.2009.12.011
  • Izquier A, Gómez-López VM. Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates. Food Microbiology. 2011;28:1170-1174. DOI: 10.1016/j.fm.2011.03.010
  • Agüero MV, Jagus RJ, Martín-Belloso O, Soliva-Fortuny R. Surface decontamination of spinach by intense pulsed light treatments: Impact on quality attributes. Postharvest Biology and Technology. 2016;121:118-125. DOI: 10.1016/j.postharvbio.2016.07.018
  • Gómez-López VM, Devlieghere F, Bonduelle V, Debevere J. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology. 2005;103:79-89. DOI: 10.1016/j.ijfoodmicro.2004.11.028
  • Lee E, Lee H, Jung W, Park S, Yang D, Lee K. Influences of humic acids and photoreactivation on the disinfection of Escherichia coli by a high-power pulsed UV irradiation. Korean Journal of Chemical Engineering. 2009;26:1301-1307. DOI: 10.1007/s11814-009-0208-5
  • Lasagabaster A, de Maranon IM. Survival and growth of Listeria innocua treated by pulsed light technology: Impact of post-treatment temperature and illumination conditions. Food Microbiology. 2014;41:76-81. DOI: 10.1016/j.fm.2014.02.001
  • Maclean M, Murdoch LE, Lani MN, MacGregor SJ, Anderson JG, Woolsey GA. Photoinactivation and photoreactivation responses by bacterial pathogens after exposure to pulsed UV-light. In: Proceedings of the 2008 IEEE International Power Modulators and High-Voltage Conference; 27-31 May 2008; Las Vegas. Boston: IEE; 2008. pp. 326-329
  • Gomez-Lopez VM, Devlieghere F, Bonduelle V, Debevere J. Factors affecting the inactivation of micro-organisms by intense light pulses. Journal of Applied Microbiology. 2005;99:460-470. DOI: 10.1111/j.1365-2672.2005.02641.x
  • Asavasanti S, Ersus S, Ristenpart W, Stroeve P, Barrett DM. Critical electric field strengths of onion tissues treated by pulsed electric fields. Journal of Food Science. 2010;75:E433–E443. DOI: 10.1111/j.1750-3841.2010.01768.x
  • Lebovka NI, Praporscic I, Vorobiev E. Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. Journal of Food Engineering. 2004;65:211-217. DOI: 10.1016/j.jfoodeng.2004.01.017
  • Jin TZ, Yu Y, Gurtler JB. Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT – Food Science and Technology. 2017;77:517-524. DOI: 10.1016/j.lwt.2016.12.009
  • Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma-A tool for decontamination and disinfection. Biotechnology Advances. 2015;33:1108-1119. DOI: 10.1016/j.biotechadv.2015.01.002
  • Dey A, Rasane P, Choudhury A, Singh J, Maisnam D, Rasane P. Cold plasma processing: A review. Journal of Chemical and Pharmaceutical Research. 2016;9:2980-2984
  • Thirumdas R, Sarangapani C, Annapure US. Cold plasma: A novel non-thermal technology for food processing. Food Biophysics. 2015;10:1-11. DOI: 10.1007/s11483-014-9382-z
  • Ziuzina D, Han L, Cullen PJ, Bourke P. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenesand Escherichia coli. International Journal of Food Microbiology. 2015;210:53-61. DOI: 10.1016/j.ijfoodmicro.2015.05.019
  • Li X, Farid M. A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering. 2016;182:33-45. DOI: 10.1016/j.jfoodeng.2016.02.026
  • Ehlbeck J, Schnabel U, Polak M, Winter J, Woedtke T, Brandenburg R, Dem Hagen T, Weltmann K-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D-Applied Physics. 2011;44:1-18. DOI: 10.1088/0022-3727/44/1/013002
  • Pignata C, D’Angelo D, Fea E, Gilli G. A review on microbiological decontamination of fresh produce with nonthermal plasma. Journal of Applied Microbiology. 2017. DOI: 10.1111/jam.13412
  • Tappi S, Berardinelli A, Ragni L, Dalla Rosa M, Guarnieri A, Rocculi P. Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies. 2014;21:114-122. DOI: 10.1016/j.ifset.2013.09.012
  • Bußler S, Ehlbeck J, Schlüter OK. Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science & Emerging Technologies. 2017;40:78-86. DOI: 10.1016/j.ifset.2016.05.007
  • Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017;75:83-91. DOI: 10.1016/j.foodcont.2016.12.021
  • Otto C, Zahn S, Rost F, Zahn P, Jaros D, Rohm H. Physical methods for cleaning and disinfection of surfaces. Food Engineering Reviews. 2011;3:171-188. DOI: 10.1007/s12393-011-9038-4
  • São José JFBd, Andrade NJd, Ramos AM, Vanetti MCD, Stringheta PC, Chaves JBP. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control. 2014;45:36-50. DOI: 10.1016/j.foodcont.2014.04.015
  • Health Protection Agency (HPA). Health Effects of Exposure to Ultrasound and Infrasound, Report of the independent advisory group on non-ionising radiation. London: HPA; 2010. 180. DOI: 978-0-85951-662-4
  • Paniwnyk L. Application of ultrasound. In: Sun D-W, editor. Emerging Technologies for Food Processing. San Diego CA (USA): Academic Press; 2014. pp. 271-291
  • Seymour IJ, Burfoot D, Smith RL, Cox LA, Lockwood A. Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science & Technology. 2002;37:547-557. DOI: 10.1046/j.1365-2621.2002.00613.x
  • do Rosario DK, da Silva Mutz Y, Peixoto JM, Oliveira SB, de Carvalho RV, Carneiro JC, de Sao Jose JF, Bernardes PC. Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries. International Journal of Food Microbiology. 2017;241:23-29. DOI: 10.1016/j.ijfoodmicro.2016.10.009
  • Birmpa A, Sfika V, Vantarakis A. Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology. 2013;167:96-102. DOI: 10.1016/j.ijfoodmicro.2013.06.005
  • Kim HJ, Feng H, Kushad MM, Fan X. Effects of ultrasound, irradiation, and acidic electrolyzed water on germination of alfalfa and broccoli seeds and Escherichia coli O157:H7. Journal of Food Science. 2006;71:168-173. DOI: 10.1111/j.1750-3841.2006.00064.x
  • Jung S, Samson CT, Lamballerie M. High hydrostatic pressure food processing. In: Proctor A, editor. Alternatives to Conventional Food Processing. London, UK: Royal Society of Chemistry Publishing; 2011. pp. 254-306.
  • Rendueles E, Omer MK, Alvseike O, Alonso-Calleja C, Capita R, Prieto M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT – Food Science and Technology. 2011;44:1251-1260. DOI: 10.1016/j.lwt.2010.11.001
  • Préstamo G, Arroyo G. High hydrostatic pressure effects on vegetable structure. Journal of Food Science. 1998;63:878-881. DOI: 10.1111/j.1365-2621.1998.tb17918.x
  • Oey I, Lille M, Van Loey A, Hendrickx M. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends in Food Science and Technology. 2008;19:320-328. DOI: 10.1016/j.tifs.2008.04.001
  • Vázquez-Gutierrez JL, Quiles A, Vonasek E, Jernstedt JA, Hernando I, Nitin N, Barrett DM. High hydrostatic pressure as a method to preserve fresh-cut Hachiya persimmons: A structural approach. Food Science and Technology International. 2016;22:688-698. DOI: 10.1177/1082013216642049
  • Denoya GI, Polenta GA, Apóstolo NM, Budde CO, Sancho AM, Vaudagna SR. Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innovative Food Science & Emerging Technologies. 2016;33:84-93. DOI: 10.1016/j.ifset.2015.11.014
  • Spilimbergo S, Komes D, Vojvodic A, Levaj B, Ferrentino G. High pressure carbon dioxide pasteurization of fresh-cut carrot. The Journal of Supercritical Fluids. 2013;79:92-100. DOI: 10.1016/j.supflu.2012.12.002
  • Ferrentino G, Komes D, Spilimbergo S. High-power ultrasound assisted high-pressure carbon dioxide pasteurization of fresh-cut coconut: A microbial and physicochemical study. Food and Bioprocess Technology. 2015;8:2368-2382. DOI: 10.1007/s11947-015-1582-0
  • Kader AA, Ben-Yehoshua S. Effects of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables. Postharvest Biology and Technology. 2000;20:1-13. DOI: 10.1016/S0925-5214(00)00122-8
  • Escalona VH, Geysen S, Verlinden BE, Nicolaï BM. Microbial quality and browning of fresh-cut butter lettuce under superatmospheric oxygen condition. European Journal of Horticultural Science. 2007;72:130-137
  • Geysen S, Escalona VH, Verlinden BE, Aertsen A, Geeraerd AH, Michiels CW, Van Impe JF, Nicolaï BM. Validation of predictive growth models describing superatmospheric oxygen effects on Pseudomonas fluorescens and Listeria innocua on fresh-cut lettuce. International Journal of Food Microbiology. 2006;111:48-58. DOI: 10.1016/j.ijfoodmicro.2006.04.044
  • Zheng Y, Yang Z, Chen X. Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control. 2008;19:470-474. DOI: 10.1016/j.foodcont.2007.05.011
  • Allende A, Luo Y, McEvoy JL, Artés F, Wang CY. Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions. Postharvest Biology and Technology. 2004;33:51-59. DOI: 10.1016/j.postharvbio.2004.03.003
  • Van der Steen C, Jacxsens L, Devlieghere F, Debevere J. Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biology and Technology. 2002;26:49-58. DOI: 10.1016/S0925-5214(02)00005-4
  • Heimdal H, Kühn BF, Poll L, Larsen LM. Biochemical changes and sensory quality of shredded and MA-packaged iceberg lettuce. Journal of Food Science. 1995;60:1265-1268. DOI: 10.1111/j.1365-2621.1995.tb04570.x
  • Jacxsens L, Devlieghere F, Van der Steen C, Debevere J. Effect of high oxygen modified atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce. International Journal of Food Microbiology. 2001;71:197-210. DOI: 10.1016/S0168-1605(01)00616-X
  • Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O. Modeling changes of headspace gas concentrations to describe the respiration of fresh-cut melon under low or superatmospheric oxygen atmospheres. Journal of Food Engineering. 2008;85:401-409. DOI: 10.1016/j.jfoodeng.2007.08.001
  • Lu C, Toivonen PMA. Effect of 1 and 100 kPa O2 atmospheric pretreatments of whole ‘Spartan’ apples on subsequent quality and shelf life of slices stored in modified atmosphere packages. Postharvest Biology and Technology. 2000;18:99-107. DOI: 10.1016/S0925-5214(99)00069-1
  • Amanatidou A, Slump RA, Gorris LGM, Smid EJ. High oxygen and high carbon dioxide modified atmospheres for shelf-life extension of minimally processed carrots. Journal of Food Science. 2000;65:61-66. DOI: 10.1111/j.1365-2621.2000.tb15956.x
  • Formica-Oliveira AC, Martínez-Hernández GB, Aguayo E, Gómez PA, Artés F, Artés-Hernández F. A functional smoothie from carrots with induced enhanced phenolic content. Food and Bioprocess Technology. 2017;10:491-502. DOI: 10.1007/s11947-016-1829-4
  • Gorny J, Agar I. Are argon-enriched atmospheres beneficial? Perishables Handling Newsletter. 1998;94:7-8
  • Jamie P, Saltveit ME. Postharvest changes in broccoli and lettuce during storage in argon, helium, and nitrogen atmospheres containing 2% oxygen. Postharvest Biology and Technology. 2002;26:113-116. DOI: 10.1016/S0925-5214(02)00006-6
  • Zhang M, Zhan ZG, Wang SJ, Tang JM. Extending the shelf-life of asparagus spears with a compressed mix of argon and xenon gases. LWT – Food Science and Technology. 2008;41:686-691. DOI: 10.1016/j.lwt.2007.04.011
  • Tomás-Callejas A, Boluda M, Robles PA, Artés F, Artés-Hernández F. Innovative active modified atmosphere packaging improves overall quality of fresh-cut red chard baby leaves. LWT – Food Science and Technology. 2011;44:1422-1428. DOI: 10.1016/j.lwt.2011.01.020
  • Gouble B, Fath D, Soudain P. Nitrous oxide inhibition of ethylene production in ripening and senescing climacteric fruits. Postharvest Biology and Technology. 1995;5:311-321. DOI: 10.1016/0925-5214(94)00030-V
  • Rodríguez-Hidalgo S, Artés-Hernández F, Gómez PA, Fernández JA, Artés F. Quality of fresh-cut baby spinach grown under a floating trays system as affected by nitrogen fertilisation and innovative packaging treatments. Journal of the Science of Food and Agriculture. 2010;90:1089-1097. DOI: 10.1002/jsfa.3926
  • Ansah FA, Amodio ML, Colelli G. Evaluation of the impact of nitrous oxide use on quality and shelf life of packaged fresh-cut ‘iceberg’ lettuce and wild rocket. Chemical Engineering Transactions. 2015;44:319-324. DOI: 10.3303/CET1544054
  • Silveira AC, Araneda C, Hinojosa A, Escalona VH. Effect of non-conventional modified atmosphere packaging on fresh cut watercress (Nasturtium officinale R. Br.) quality. Postharvest Biology and Technology. 2014;92:114-120. DOI: 10.1016/j.postharvbio.2013.12.012
  • Inestroza-Lizardo C, Silveira AC, Escalona VH. Metabolic activity, microbial growth and sensory quality of arugula leaves (Eruca vesicaria Mill.) stored under non-conventional modified atmosphere packaging. Scientia Horticulturae. 2016;209:79-85. DOI: 10.1016/j.scienta.2016.06.007